CAD-based shape optimisation using a discrete adjoint solver

Wolfram Jahn, Shenren Xu, Dominic Jones, Jens-Dominik Müller

Dept. of Engineering, Queen Mary, University of London

March 28th 2012
Outline

Motivation

Implementation

Results

Summary and future work
Motivation

- Parameterisation is the key to successful optimisation
 - Node-based optimisation interface not well with CAD
 - Full CAD-based approach needs either (1) differentiating the CAD system or (2) solving transformation matrix using finite difference

Figure: Node-based (left) v.s. full CAD-based (right) optimisation.
Motivation

Parameterisation is the key to successful optimisation

- Node-based optimisation interface not well with CAD
- Full CAD-based approach needs either (1) differentiating the CAD system or (2) solving transformation matrix using finite difference

Figure: Node-based (left) v.s. full CAD-based (right) optimisation.

A more flexible CAD-based optimisation is needed
Motivation

▶ Use the control points of the boundary representation (BRep) as design parameters

Figure: Surface with control points (C.P.) viewed in CAD.

▶ Advantages: good interface to CAD, no smoothing/fd

▶ Challenge: imposition of various constraints
Motivation

- Use the control points of the boundary representation (BRep) as design parameters

Figure: Surface with control points (C.P.) viewed in CAD.

- Advantages: good interface to CAD, no smoothing/fd
- Challenge: imposition of various constraints
Motivation

▶ Use the control points of the boundary representation (BRep) as design parameters

Figure: Surface with control points (C.P.) viewed in CAD.

▶ Advantages: good interface to CAD, no smoothing/fd
▶ Challenge: imposition of various constraints
Outline

Motivation

Implementation

Results

Summary and future work
Boundary representation, definition of NURBS

- Surfaces in CAD systems are NURBS (Non-Uniform Rational B-Spline), defined as follows

\[
X_s(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} R_{ij}(u, v) P_{i,j}
\]

\[
R_{ij}(u, v) = \frac{N_{i,p}(u)N_{j,q}(v)w_{i,j}}{\sum_{k=0}^{n} \sum_{l=0}^{m} N_{k,p}(u)N_{l,q}(v)w_{k,l}}
\]

- Position, tangent vectors and curvatures can be computed inexpensively for imposing (nonlinear) continuity constraints
Boundary representation, definition of NURBS

- Surfaces in CAD systems are NURBS (Non-Uniform Rational B-Spline), defined as follows

$$X_s(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} R_{ij}(u, v) P_{i,j}$$

$$R_{ij}(u, v) = \frac{N_{i,p}(u) N_{j,q}(v) w_{i,j}}{\sum_{k=0}^{n} \sum_{l=0}^{m} N_{k,p}(u) N_{l,q}(v) w_{k,l}}$$

- Position, tangent vectors and curvatures can be computed inexpensively for imposing (nonlinear) continuity constraints
Test points for imposing constraints

- Continuity is enforced at test points located along the joint edge.

![Diagram showing test points distributed along the joint edge.]

- Constraint functions evaluated at test points:

\[
C_{G0} = (X_s)_{left} - (X_s)_{right} = 0
\]
\[
C_{G1} = (\vec{\tau})_{left} \times (\vec{\tau})_{right} = 0
\]
\[
C_{G2} = (k)_{left} - (k)_{right} = 0
\]
Imposing continuity constraints using nullspace

- Control points are only allowed to move within the nullspace of the linearized constraint equations

\[
\frac{\partial C_{Gi}}{\partial P_i} dP_i = 0 \ (i = 0, 1, 2)
\]

\[\Rightarrow \delta \tilde{P} = \text{Ker} \left(\frac{\partial C_{G0}}{\partial P}, \frac{\partial C_{G1}}{\partial P}, \frac{\partial C_{G2}}{\partial P} \right) \delta \tilde{\alpha}\]

- Nonlinear constraints \(G_1\) and \(G_2\) can be dealt with
- Nullspace is independent of mesh size, thus remains inexpensive to compute for large cases
Imposing continuity constraints using nullspace

- Control points are only allowed to move within the nullspace of the linearized constraint equations

\[\frac{\partial C_{G_i}}{\partial P_i} dP_i = 0 \quad (i = 0, 1, 2) \]

\[\implies \delta \vec{P} = \text{Ker} \left(\frac{\partial C_{G_0}}{\partial P}, \frac{\partial C_{G_1}}{\partial P}, \frac{\partial C_{G_2}}{\partial P} \right) \delta \vec{\alpha} \]

- Nonlinear constraints \(G_1 \) and \(G_2 \) can be dealt with

- Nullspace is independent of mesh size, thus remains inexpensive to compute for large cases
Imposing continuity constraints using nullspace

- Control points are only allowed to move within the nullspace of the linearized constraint equations

\[
\frac{\partial C_G^i}{\partial P_i} dP_i = 0 \quad (i = 0, 1, 2)
\]

\[
\implies \delta \vec{P} = \text{Ker} \left(\frac{\partial C_{G0}}{\partial P}, \frac{\partial C_{G1}}{\partial P}, \frac{\partial C_{G2}}{\partial P} \right) \delta \vec{\alpha}
\]

- Nonlinear constrains $G1$ and $G2$ can be dealt with
- Nullspace is independent of mesh size, thus remains inexpensive to compute for large cases
Outline

Motivation

Implementation

Results

Summary and future work
S-bend shape optimisation, case parameters

- Geometry parameterisation: 30 NURBS patches, with 8 patches for "S" with 288 C.P.
- 203 design variables, 313,925-cell mesh, $Re_H = 300$
- Solver: in-house incompressible discrete adjoint solver

Figure: NURBS patches (left) and all-hex mesh (right).

(Ref: D. Jones, J.-D. Müller and S. Bayyuk, CFD Development with Automatic Differentiation, AIAA-2012-573)
S-bend shape optimisation, primal validation

- Small separation bubble about to reach pressure outlet
- Flow speed contour plots at outlet indicate complex secondary flow

Figure: Flow speed contour plots in medien plane and outlet boundary plane, GPDE v.s. FLUENT.
S-bend shape optimisation, results

Iteration 0
\(\Delta P = 0.015273 \text{ Pa}\)
Improvement 0.00%
S-bend shape optimisation, results

Iteration 1
\[\Delta P = 0.015182 \text{ Pa} \]
Improvement 0.60%
S-bend shape optimisation, results

Iteration 2
ΔP = 0.014839 Pa
Improvement 2.84%
S-bend shape optimisation, results

Iteration 3
ΔP = 0.013074 Pa
Improvement 14.4%
S-bend shape optimisation, results

Iteration 4
ΔP = 0.012610 Pa
Improvement 17.4%
S-bend shape optimisation, results

Iteration 5
\(\Delta P = 0.012214 \text{ Pa} \)
Improvement 20.0\%
S-bend shape optimisation, results

- Unexpected shape at 6th iteration

![Updated shape at 6th iteration.](image)

- Possible cause for failure
 - Interference from non-vanishing large sensitivity at S-bend throat ⇒ allow the throat to deform
S-bend shape optimisation, results

- Unexpected shape at 6th iteration

Figure: Updated shape at 6th iteration.

- Possible cause for failure
 - Interference from non-vanishing large sensitivity at S-bend throat ⇒ allow the throat to deform
Outline

Motivation

Implementation

Results

Summary and future work
Summary

A novel CAD-based optimisation method is developed, using the control points of the boundary representation (BRep) for parameterisation

- Good interface with CAD
- Continuity constraints easy to impose
- Extendable to more complex geometry
- Cost is negligible compared to flow solver
Future work

- **Short-term (Apr. 2012)**
 - Implementation of G2 constraint
 - Extend to more complex geometries

![Examples of more complex geometric entities.](image)

- **Long-term (May 2011- May 2013)**
 - Apply to turbomachinery components, such as compressor/turbine blade shape optimisation
Thank you! Questions?