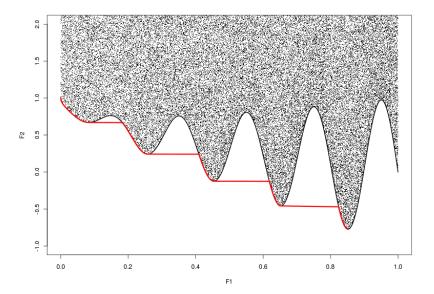
Expected Hyper Volume Improvement Development of Expected Improvement for multi-objective problem

Łukasz Łaniewski-Wołłk

Institute of Aeronautics and Applied Mechanics Warsaw University of Technology

Reseach for: Institute of Fluid Science Tohoku University

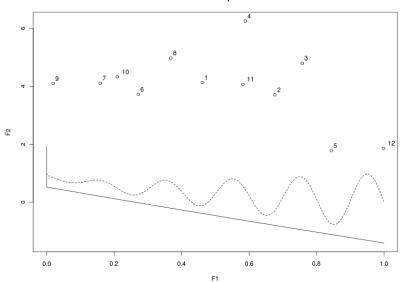

2 Algoritm

- Kriging Model
- Criterion
- Sampling

э

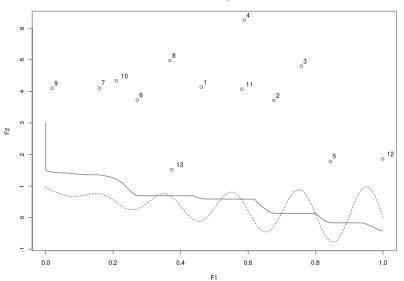
Zitzler et al. (2000) test-case function no. 3

Ł. Łaniewski-Wołłk (ITLIMS)

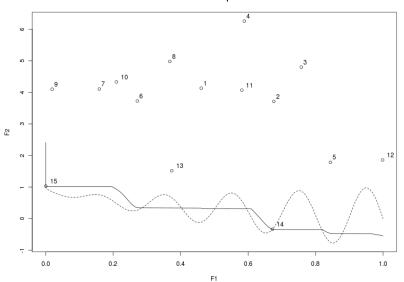

Expected Hyper Volume Improvement

Surrogate Model based Optimization

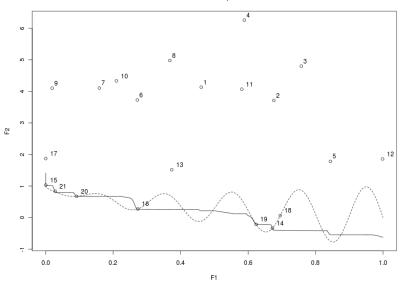
Algorithm


- Obsign of Experiments
- Objective function evaluation for sample points
- Surrogate model fit
- Selection of new sampling points
- Sack to 2

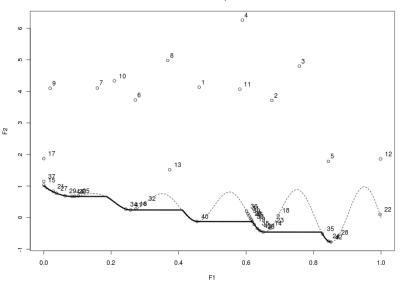
Design of experiment


Actual samples

1st iteration


Actual samples

2nd iteration


Actual samples

3rd iteration

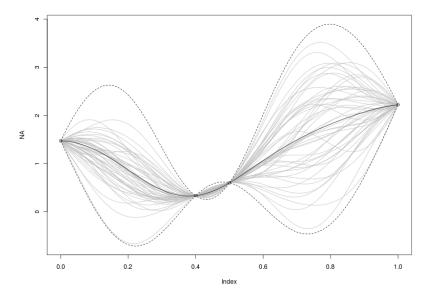
Actual samples

7th iteration

Actual samples

xpected Hyper Volume Improvement

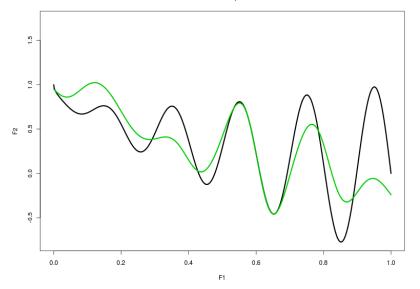
Surrogate Model based Optimization


Algorithm

- Oesign of Experiments
- Objective function evaluation for sample points
- Surrogate model fit
- Selection of new sampling points
- Sack to 2

Main Question

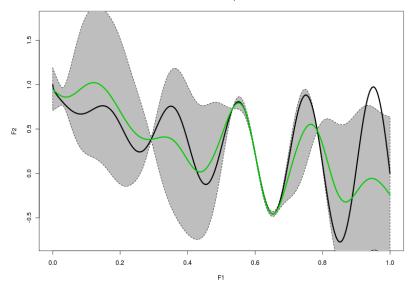
How to select new sampling points?


Kriging estimation example

Ł. Łaniewski-Wołłk (ITLiMS)

Optimization trap

Actual samples



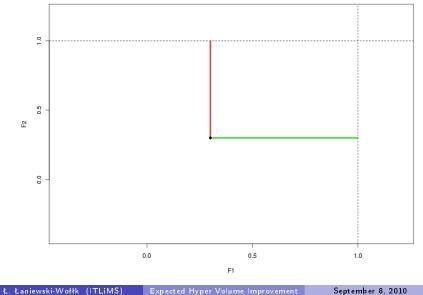
Ł. Łaniewski-Wołłk (ITLiMS)

xpected Hyper Volume Improvement

Optimization trap

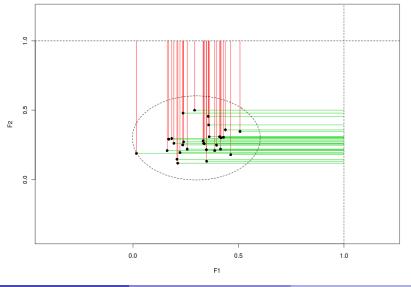
Actual samples

xpected Hyper Volume Improvement

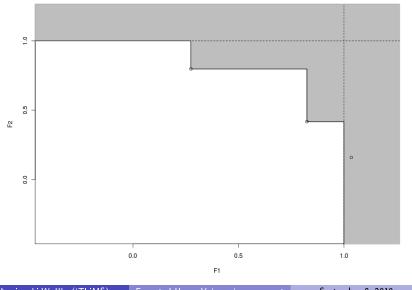

Explore and optimize

There are several concepts of balancing exploration and optimization. Widely used concept is Expected Improvement.

Extensions of Expected Improvement for multi-objective

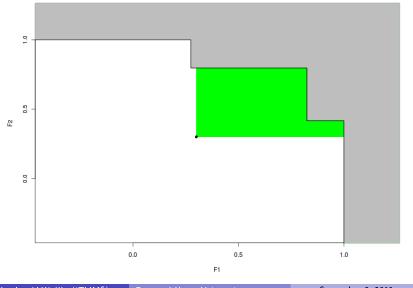

- Expected Improvement (EI) with respect to a desired level of the objectives. (Jeong et al)
- Expected Hypervolume Improvement (EHVI) with respect to the dominated set.
- Probability of Improvement (PI) with respect to the dominated set. (Keane)

Improvement with respect to desired values

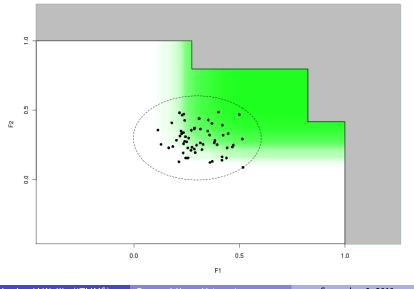


September 8, 2010 15 / 30

Expected Improvement



Dominated Set


L. Laniewski-Wołłk (ITLiMS) Expected Hyper Volume Improvement September 8, 2010 17 / 30

Hypervolume Improvement

Ł. Łaniewski-Wołłk (ITLIMS) Expected Hyper Volume Improvement September 8, 2010

Expected Hypervolume Improvement

Ł. Łaniewski-Wołłk (ITLiMS) Expected Hyper Volume Improvement September 8, 2010 14

Sampling

We have then several quantities:

Functions

- Model estimator $\hat{f}:\Omega
 ightarrow \mathbb{R}^2.$
- Model standard deviation $\hat{\sigma}: \Omega \to \mathbb{R}^2_+$.
- Expected Improvement: $\mathit{EI}:\Omega
 ightarrow \mathbb{R}^2_-$
- Expected Hypervolume Improvement $\mathit{EHVI}:\Omega
 ightarrow \mathbb{R}_+.$
- Probability of Improvement $PI : \Omega \rightarrow [0, 1]$.

From these we can construct several sampling criteria:

Sampling criterion (multidimensional)

• EHVI:
$$(\hat{f}_1, \hat{f}_2, -EHVI)$$

•
$$PI: (\hat{f}_1, \hat{f}_2, -PI)$$

Sampling

After we select the sampling criterion, we are performing these tasks:

- Optimization of the criterion with NSGAII algorithm.
- Olustering of the Pareto front of the criterion.
- Selection of sampling points from the groups.

Cluster analysis

- *agnes* The Agnes agglomerative hierarchical clustering. We use a distance based on correlation obtained from the Kriging model.
- kmeans K-Means algorithm performed in parameter space (k = 4).
- one Place whole Pareto front in one group.

Selection

- parmean New point in the mean of parameters of the group
- *valmean* New point in a point from the group that is nearest to the mean of values of the group
- *var* We select from the group the point with the highest variance.
- crit EHVI and PI respectively.

Kriging Model

- *km* Kriging model with 0-degree polynomial as mean
- *lkm* Kriging model with 1-degree polynomial as mean

Ł. Łaniewski-Wołłk (ITLiMS)

Expected Hyper Volume Improvement

Methodology

Computer experiments

Full-factorial experiment.

- 66 possible settings.
- 3 test-case functions (Zitzler et al. (2000)).
- 50 runs of the algorithm.
- Stopping when achieving 80 sample points.

Performance metric: Hypervolume Ratio

$$\mathit{HVR} = \log rac{|Q|}{|P^*|}$$

Where |Q| hypervolume of dominated set, $|P^*|$ hypervolume of the real Pareto front.

Results. Cluster Analysis.

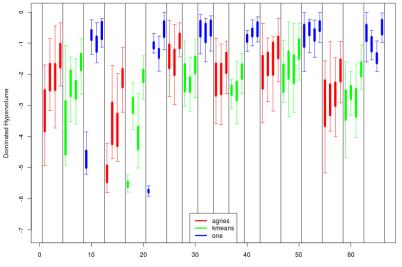


Fig.1: Boxplot of results for ZDT3 testcase with 80 sample points.

Ł. Łaniewski-Wołłk (ITLiMS)

Results. Selection Method

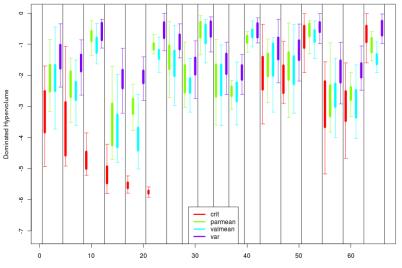


Fig.1: Boxplot of results for ZDT3 testcase with 80 sample points.

Ł. Łaniewski-Wołłk (ITLiMS)

Results. Sampling Criterion

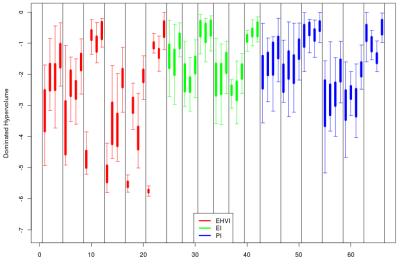


Fig.1: Boxplot of results for ZDT3 testcase with 80 sample points.

Ł. Łaniewski-Wołłk (ITLiMS)

opected Hyper Volume Improvement

*)40

Results. Kriging Model

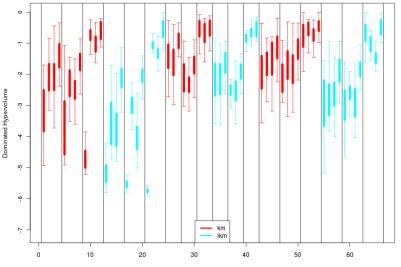


Fig.1: Boxplot of results for ZDT3 testcase with 80 sample points.

Summary of results:

Model

The model has constant and high influence on convergence of the algorithm.

Sampling Criterion

EHVI performed best in these experiments, and outpaced other criteria in the multi-modal ZDT3 test-case.

Best performing

The best performing algorithm selected one sampling at a iteration, basing on EHVI.

Research

Further developments

- Extension of *EHVI* calculation algorithm on arbitrary number of objective functions.
- Incorporation of constrains into the algorithm.
- Testing on engineering problems.

Thank You for your attention.

э

< A