Shape Optimization and Mesh Regularization

for

Fluid-Structure Interaction Wind engineering problems

Electra Stavropoulou Majid Hojjat Kai-Uwe Bletzinger

Chair of Structural Analysis - Technische Universitaet Muenchen

Spring 2010

Outline

- Structural Design
- Design workflow
 - Geometry
 - Form-finding, Mesh regularization
 - FSI analysis
 - Sensitivity
- Summarizing example
- Next steps

Motivation

Aim:

Design and improvement of light weight structures

Characteristics:

Thin and slender structures – complex geometries

Highly turbulent Atmospheric wind around the structure

Strongly coupled fields

Problem type

[Frei Otto, München 1999]

Electra Stavropoulou – Majid Hojjat

Electra Stavropoulou - Majid Hojjat

Design optimization workflow

$$\frac{df}{ds} = \frac{df}{dx}\frac{dx}{dy}\frac{dy}{ds}$$

Electra Stavropoulou - Majid Hojjat

Design optimization work flow

CAD - Structural shape representation

FE-base design

- Design variables: FE nodes

CAD-base design (CAGD)

- Design variables: Geometry parameters

Isogeometric design

- Design variables: NURBS parameters

Mechanical criteria

- Design variables: supports, Pre-stress, etc.

Design optimization work flow

Membrane structures and Form finding

Minimal surface: principle of virtual work

$$\delta W = \int_{V} \boldsymbol{\sigma} : \delta \boldsymbol{e} \, dv = \int_{V} \boldsymbol{S} : \delta \boldsymbol{E} \, dV = 0$$

 $\boldsymbol{S} = det \boldsymbol{F} \boldsymbol{F}^{\!-\!1} \boldsymbol{\sigma} \boldsymbol{F}^{\!-\!T}$

(Bltezinger, Ramm 1999)

"artificial" 2nd Piola-Kirchhoff surface stress ${f S}$ instead of Cauchy ${f \sigma}$

 \rightarrow control of tangential shape variation

Mesh regularization

stiffness matrix of problem:

$$\frac{\partial r_i}{\partial u_j} = \int_{\Omega} (S: \frac{\partial^2 E}{\partial u_i \partial u_j}) \, dV = \int_{\Omega} (S^{\alpha\beta}(g_{a,i} \cdot g_{\beta,j}) \, dV$$

$$G_a = \frac{\partial X}{\partial \theta^a} \quad g_a = \frac{\partial x}{\partial \theta^a}$$

Mesh Regularization - Templates

Mesh Regularization - Templates

Mesh Regularization - Templates

Applications – mesh quality improvement

Distribution angle of distortion

Applications – Quality improvement

Applications – noise smoothing

Applications – noise smoothing template

Applications – large deformations

- surface deformations : curving

template

Applications – large deformations

- surface deformations : flattening

Applications – large deformations initial template - volume deformations : bulk motion 9

Design optimization workflow

Partitioned FSI environment

- Geometrically nonlinear
- Generalized- α time integration
- Parallel computation

- Non-matching grids
 - . Fix-point iteration
 - . Vector extrapolation
 - . Quasi-Newton (Degroote 2009)
- Parallel computation

- Mesh motion
- Parallel computation

NAND optimization environment

Validation example: Wind loads

FSI example

- Flexible structure subject to wind

ARIES - mobile - © Gengnagel, 2006

FSI verification: DFG Benchmark

- Series of simulations for validation purposes:

- Structure
- Fluid
- FSI

- Performed and compared by 11 Institutes

FSI verification: DFG Benchmark

(Turek 2006)

	difference		difference		difference
CSD 1	0.00 [%]	CFD 1	0.18 [%]	FSI 1 (Steady state)	2.55 [%]
CSD 2	0.00 [%]	CFD 2	0.85 [%]	FSI 2 (Transient)	3.45 [%]
CSD 3	0.45 [%]	CFD 3	1.72 [%]	FSI 3 (Transient – Strongly coupled)	1.02 [%]

Coupling algorithm Quasi-Newton [1]

- Alternative to fixed-point iteration

Approximate new residual increment based on known increments:

$$\Delta \mathbf{R} = -\mathbf{R}^{\Gamma,k} \approx \sum_{i=1}^{k-1} \alpha_i^k \Delta \mathbf{R}^{\Gamma,i}$$

solve the EQS \rightarrow linear coefficients α_i^k

Determine new interface displacement increment:

$$\Delta \mathbf{d}^{\Gamma} = \sum_{i=1}^{k-1} \alpha_i^k \Delta \tilde{\mathbf{d}}^{\Gamma,i} - \Delta \mathbf{R}$$

Update the interface position:

$$\mathbf{d}^{\Gamma,k+1} = \mathbf{d}^{\Gamma,k} + \Delta \mathbf{d}^{\Gamma,k}$$

Comparison QNR vs. fixed Point – FSI2

basic settings:

- examine first 100 timesteps
- relative convergence criterion: $\varepsilon <=1.0e^{-04}$
- timestep: =0.0005 [s] (maxCo≈0.8)
- predictor: Newmark 2nd order

Туре	mean iter	Reduction [%]
Const. (ω=0.2)	35	+464.0
Aitken	6.4	0.0
Basic QNR	4.68	-26.9
QNR-H	3.26	-49.0
QNR-HRC	3.14	-50.4

Comparison QNR vs. fixed Point – FSI3

basic settings:

- examine first 100 timesteps
- relative convergence criterion: $\varepsilon <=1.0e^{-04}$
- timestep: =0.0002 [s] (maxCo≈0.4)
- predictor: Newmark 2nd order

Туре	mean iter	Reduction [%]
Const. (ω=0.2)	-	-
Aitken	11.2	0.0
Basic QNR	8.54	-23.8
QNR-H	5.34	-52.3
QNR-HRC	5.06	-54.8

Benchmarking – Experimental benchmark

Benchmarking – Experimental benchmark

Benchmarking – Experimental benchmark

Design optimization work flow

Sensitivity Analysis

$$\begin{cases} S(u, v, s) = 0 \\ F(u, v, s) = 0 \end{cases}$$

State equations

(Sobieszcanski-Sobieski 1990)

$$\Psi = \Psi(u, v)$$
$$\frac{d\Psi}{ds} = \frac{\partial\Psi}{\partial u}\frac{du}{ds} + \frac{\partial\Psi}{\partial v}\frac{dv}{ds} + \frac{\partial\Psi}{\partial s}\frac{dv}{ds}$$

Objective (target) function

Sensitivity equations

$$\begin{bmatrix} \frac{\partial S}{\partial u} & \frac{\partial S}{\partial v} \\ \frac{\partial F}{\partial H} & \frac{\partial F}{\partial v} \\ \frac{\partial V}{\partial u} & \frac{\partial F}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{du}{ds} \\ \frac{dv}{ds} \\ \frac{dv}{ds} \end{bmatrix} = \begin{bmatrix} \frac{\partial S}{\partial s} \\ \frac{\partial F}{\partial s} \\ \frac{\partial F}{\partial s} \end{bmatrix}$$

Fluid-Structure coupled sensitivities

Sensitivity Analysis - Algorithm

$S(u_0, v_0)$	$v_0, s_0) = 0$	$F(u_0, v_0, s_0) = 0$		
structure	$\rightarrow \frac{du}{ds} = \left(\frac{dS}{du}\right)$	$^{-1}\left(\frac{\partial S}{\partial v}\frac{dv}{ds}+\frac{\partial S}{\partial s}\right)$		
$\frac{dv}{ds} \approx$	$\frac{v_i - v_0}{\Delta s}$	$u_i = u_0 + \frac{du}{ds}\Delta s = u_0 + \Delta u$		
fluid $v_i = v(u_0 + \Delta u, z_0 + \Delta z)$				
	$S(u_0, T)$ structure $\frac{dv}{ds} \approx$ fluid	$S(u_{0}, v_{0}, s_{0}) = 0$ structure $dv = \left(\frac{du}{ds}\right)$ $dv = \frac{v_{i} - v_{0}}{\Delta s}$ fluid $v_{i} = v(u_{0})$		

Example – The Banana structure

Design variable: Geometry of the supporting frames, NURBS

Objective: Multi objective design (lift and drag forces)

Example - Design

Electra Stavropoulou – Majid Hojjat

Example – Design and state variables

Example – Mesh regularization

Example – Design, geometry

Example – Definition of the physical state

Structure:

- membrane, cable
- static nonlinear

Fluid:

- RANS k-omega SST

(Menter 1994)

- ABL inlet
- small blockage

Example – Fluid field

Electra Stavropoulou – Majid Hojjat

Example – Design optimization loop

Example – solution

Example – Results

Summary

- A modular design workflow
- Modules
 - Geometry and mesh
 - Physical state
 - Partitioned FSI
 - Sensitivity
- Application

Next step...

- More Complex geometry
- Rotating parts

ТШП

Next step...

Geometry

Electra Stavropoulou - Majid Hojjat

Next step...

Next step...

Block-structured grid

Electra Stavropoulou - Majid Hojjat

Electra Stavropoulou – Majid Hojjat

Electra Stavropoulou – Majid Hojjat

Next step...

Fluid Optimisation Workflows for Highly Effective Automotive Development Processes

http://flowhead.sems.qmul.ac.uk/

With special acknowledgement to the European Commission under THEME SST.2007-RTD-1: Competitive product development from February 2009 to January 2012.

Shape Optimization and Mesh Regularization

for

Fluid-Structure Interaction Wind engineering problems

THE END

Electra Stavropoulou

Majid Hojjat

Kai-Uwe Bletzinger

