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Optimization Algorithm

One-Shot: Approximative reduced SQP method with inexact gradients:
@ Perform n, flow solver steps for state u
@ Perform n,, steps of the adjoint flow solver w.r.t. drag
© Perform n,, steps of the adjoint flow solver w.r.t. lift
© Compute approximation B of the reduced Hessian

@ Solve
B Dg Aq N —bf
bZT 0 Vk41 o )\gC 4
with D; = V4f — (Dge)T(Duc)~ TV uf
O Setgki1 =gk +7Aq

@ Adapt CFD mesh and goto 1.
Crucial: Fast gradient evaluation, good Hessian approximation
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Standard Parametric Paradigm

@ Choose fixed geometry bl
parametrization g € R

@ Results in finite dimensional osf
NLP:

mc;n F(u(q),q)

@ Gradient given by formal o4
Lagrangian for finite
dimensional problem:
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Shape Optimization Paradigm

@ One parametric family of bijective mappings:
Tt ‘R — RVt S [0,’7’], (t, X) — Tt(X)
Q= TH(Q) = {Te(x0) | X € 2}
@ Speed Method: T; defined via “flow equation”:

ax
dt
@ Perturbation of identity:

= V(t,x), x(0) = xo

TI(XO) = Xp + tV(Xo)

Shape Derivative

dJV]:= lim J(&) = J(Q)

—0+ t
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Shape Derivative

Objective Function

J(Q) = [ h(x) dNT(x) = [ h(Ti(x)) dAT~1(x)
ey = i o

J
— [ A(Ti)) det(DTi(x)) DT, * ()] dA™ ()
J

v

Shape Derivative

dJ(Q)[V] = / (Vxh, V) + h[div V — (DVn, n)] d\"
r
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@ Choose V; as hat-function over surface node p;
@ Each node of the wing is design parameter

@ Must be computable in one sweep
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The Hadamard Theorem (cf. Sokolowski, Zolésio, 1992)

Under some regularity assumptions, there exists a scalar distribution
G(I") with support on I such that

Q(Q)IV) = (G(1). (V) = [(V.) g ds
r

Shape Derivative is a scalar product with direction (V, n)

Shape Derivative with Hadamard Theorem

JQ) = / h A
r

an@)vi= [(v.n [g—g+m] A"
r
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Model Problem: Incompressible Navier—Stokes

(mirgz)J(u,p, Q) = /f(u, Du, p) dA+/g(u, Dnu,p,n) dS
U:p7
Q Fo

subject to

r
—pAu+ puVu+Vp=pG in Q /\y?
divu =0 r\ o S
u=u. on Ty : TR

u=0 on Iy s —

ou
pn—u%_o on [I_

@ f:RIxRIY xR — R, (u,C,p)+— f(u,C,p)
@ g RIXRIxRxRY =R, (u,b,p,n) — g(u,b,p,n)
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Shape Derivative

ad(u,p,Q)[V] =
/ (V, m)(u, Du, p) dS

Mo
+ (V.1 (D900, Dot pu) -+ (s Dot pir)] oS
Mo
v d 29 0N d 8u, S
WAL M P +Z@c,/ |
ro i=1

" / (V. ) [(divr Vag) — £(Vng.n)] dS

Mo
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Possible Objective Functions

Fluid Energy Dissipation into Heat
3 2
OUk
ayfem=p 5 ()

j k=1

| N\

Aerodynamic Drag

min Fp _/—M(Dnu, a) + p(n,a) dS
(u,p,02) :
0

A\
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Fluid Energy Dissipation: First Order Shape Calculus

dEs(w. V1 = [V, [ui(a“kﬂ

r

b) Navier—Stokes

du\®  duy O
dEns(u V] = [(Von MZ<8:> _ o ank] as
r

—pAX = pAVU—p(VA) U+ VA = —2Au inQ
dvl, = 0 in Q
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Second Order Shape Calculus

d2ES(“7 Q)[Va W] =h+h

where
I :r/<W ) {dlv Vv (M”Z; <8)L:j’> ) + WV (u; (Z)L:,I> )]

/2_/ (V.n) [2 Zau’s<a“’ n>)]

3 N 2
+<W,n><V=”>£, (”Z <C;)L;ll'> )

@ Divergence-free Poincaré-Steklov operator S
@ Not computable in one sweep
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Symbol of an Operator

Suppose Fourier disturbance (oscillation) of design: §(x) = ¥

@ First order differential operator: Hq = iwQq

@ Second order differential operator: Hj = —w?

q
@ Dirichlet to Neumann Map / Poincaré-Steklov: HG = |w|q

Stokes (analytic) / Navier—Stokes (frequency analysis):

H = (8- || + 1)

v

Approximation:

H=—aAr +id
Symbol: 1 + aw?
« chosen to match boundary discretization
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Symbol of the Stokes Hessian

Variation in gradient and state given by

2 -
(5GE] _ —ZMZ M@Ukiq], U;([Z]] — l’:lkeIW1X1 ew2X2

Boundary condition gives

8X2
Divergence-Free Poincaré-Steklov in Fourier Space gives

—,u(—w12 + wg) 0 iwy 01 0
0 —p(—w2 +wd)  wp o |=1(0
iwq wo 0 p 0

Uy =

Non-Contradiction

Only frequencies non-contradicting the above:

wi = |wp|
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Navier—Stokes: Initial and Optimal Domain
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Performance: Navier—Stokes

65
—Preconditioned
— Unpreconditioned
60
55
o
2
S
2
Q2
o
50
45
40 Il Il Il Il Il —
0 50 100 150 200 250 300 350
Iteration

@ Optimum in iteration 71 vs 350: 80% less iterations

Stephan Schmidt (University of Trier) Large Scale Shape Optimization September 24, 2010



Euler Drag Reduction

Minimize Wave Drag

min J(u,Q) = /(pg,n> dS:/p-ng as
(u.9)
.
subject to
ou ou ou
0 = A (V)8x1 +A2(V)8_x2 +A3(V)8_3 in Q
0 = (un onl
Uk = U 0N lipfiow

@ Euler Flux Jacobian: A;(V)

@ Conserved variables: U = (p,pu1,pu2,pu3,pE)T
@ Primitive variables: V = (p, uy, U, us,p)T

e Perfect gas: p= (v — 1)p(E — 5(u2 + U2 + u3))
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Euler Gradient

Shape Derivative for Euler Drag Reduction

dF(Q)[V] = / (V. n) [(Vpe 1, 1) + ~(pr, 1) — AUp(Du - n, )]
I
+ (pe — AUyu)dn[V] dS

_ /<v, ) (Ve 1, 1) — AUp(Du - , ) + dive (07 — AUpu)]
/

v

@ Hessian Symbol: 2D: H§ = —w?§
2
3D: HG = —%12" (cf. Arian, Ta’asan 1996), HG = —(w? + w3)q (here)

@ MDO: Constraint on contour length and bending stiffness

[ os<to [(r-yor ds= 1,
r r
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Optimized Shape: Supersonic

@ DLR Flow Solver TAU

@ Unstructured Finite
Volume

@ Mach 2.00

@ Initial NACA0012:
Cp =9.430-1072

@ Optimal Haack Ogive:
Cp=4.721-1072

@ Reduction by 49.9%

@ 400 design parameters
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Optimization History: Wall-Clock-Time

penalty function value
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Wall-clock time reduced by 99% (2.77h vs. 100s)
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VELA Aircraft

@ 115,673 surface node
positions to be optimized

VELA: Very Efficient Large Aircraft ~ @ Perturbation in initial normal
Design study for blended direction: V =n
wing-body configurations @ Planform constant
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3D Aircraft Optimization: VELA

Shape State Cp C a My
115,673 29,297,175 4.770-10~% 1.787-10~"'" 1.8° 0.85
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3D Aircraft Optimization: VELA

Shape Cp % C. %
115,673 3.342.107% -30.06% 1.775-107" —0.67%
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Convergence History
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Conclusions

Summary:
@ Derivation of shape gradients and Hessians
@ Hessian operator symbol approximations
. . . : ; optimization __
@ Good Hessian approximation results in equation —5moe= ~ 2.5

@ Structure exploitation CPU wall-clock time improvements:

e Shape Hessian: 88%
o Shape derivative: 75%

Conclusions:

@ Structure exploitation of shape optimization problems can lead to
tremendous speed-ups

@ Very large number of shape design parameters are possible
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