Large Scale Shape Optimization in CFD

Stephan Schmidt Team: Caslav Ilic, Volker Schulz, Nicolas Gauger

September 24, 2010

Stephan Schmidt (University of Trier)

Outline

1

Shape Optimization based on Shape Calculus

- Standard Approach
- Shape Derivatives
- Hadamard Theorem

Incompressible Navier–Stokes

- Gradient Derivation
- Shape Hessian Operator Symbol Approximations

3 Compressible Euler

- Airfoil Optimization
- VELA Optimization

Conclusions

Optimization Algorithm

One-Shot: Approximative reduced SQP method with inexact gradients:

- Perform n_u flow solver steps for state u
- Perform n_{λ_d} steps of the adjoint flow solver w.r.t. drag
- Perform $n_{\lambda_{\ell}}$ steps of the adjoint flow solver w.r.t. lift
- Ocmpute approximation B of the reduced Hessian
- Solve

$$\begin{bmatrix} B & \tilde{D}_{\ell} \\ \tilde{D}_{\ell}^{\mathsf{T}} & 0 \end{bmatrix} \begin{pmatrix} \Delta q \\ \nu_{k+1} \end{pmatrix} = \begin{pmatrix} -\tilde{D}_{\mathsf{f}} \\ \lambda_{\ell} \boldsymbol{c} - \ell \end{pmatrix}$$

with
$$\tilde{D}_f = \nabla_q f - (D_q c)^T (D_u c)^{-T} \nabla_u f$$

- $I Set q_{k+1} = q_k + \tau \Delta q$
- Adapt CFD mesh and goto 1.

Crucial: Fast gradient evaluation, good Hessian approximation

Standard Parametric Paradigm

- Choose fixed geometry parametrization $q \in \mathbb{R}^{n_q}$
- Results in finite dimensional NLP:

 $\min_{q} F(u(q),q)$

 Gradient given by formal Lagrangian for finite dimensional problem:

$$\frac{dF}{dq}(u(q),q) = \frac{\partial F}{\partial q} - \lambda^{T} \frac{\partial c}{\partial q}$$
$$\left[\frac{\partial c}{\partial u}\right]^{T} \lambda = \frac{\partial F}{\partial u}$$

Shape Optimization Paradigm

• One parametric family of bijective mappings:

$$T_t : \mathbb{R}^n \to \mathbb{R}^n \ \forall t \in [0, \tau], \ (t, x) \mapsto T_t(x)$$
$$\Omega_t := T_t(\Omega) = \{T_t(x_0) \mid x_0 \in \Omega\}$$

• Speed Method: *T_t* defined via "flow equation":

$$\frac{dx}{dt} = V(t, x), \ x(0) = x_0$$

• Perturbation of identity:

$$T_t(x_0) = x_0 + tV(x_0)$$

Shape Derivative

$$dJ[V] := \lim_{t \to 0^+} \frac{J(\Omega_t) - J(\Omega)}{t}$$

Stephan Schmidt (University of Trier)

Shape Derivative

Objective Function

$$J(\Omega_t) := \int_{\Gamma_t} h(x) \ d\lambda_t^{n-1}(x) = \int_{\Gamma} h(T_t(x)) \ d\lambda_t^{n-1}(x)$$
$$= \int_{\Gamma} h(T_t(x)) \det(DT_t(x)) \| DT_t^{-*}(x)n(x)\| \ d\lambda^{n-1}(x)$$

Shape Derivative

$$dJ(\Omega)[V] = \int_{\Gamma} \langle \nabla_x h, V \rangle + h[\operatorname{div} V - \langle DVn, n \rangle] d\lambda^{n-1}$$

Shape Optimization Paradigm

- Choose V_i as hat-function over surface node p_i
- Each node of the wing is design parameter
- Must be computable in one sweep

Stephan Schmidt (University of Trier)

The Hadamard Theorem (cf. Sokolowski, Zolésio, 1992)

Under some regularity assumptions, there exists a scalar distribution $G(\Gamma)$ with support on Γ such that

$$dJ(\Omega)[V] = \langle G(\Gamma), \langle V, n \rangle \rangle = \int_{\Gamma} \langle V, n \rangle \ g \ dS$$

Shape Derivative is a scalar product with direction $\langle V, n \rangle$

Shape Derivative with Hadamard Theorem

$$J(\Omega) = \int_{\Gamma} h \, d\lambda^{n-1}$$
$$dJ(\Omega)[V] = \int_{\Gamma} \langle V, n \rangle \, \left[\frac{\partial h}{\partial n} + \kappa \, h \right] \, d\lambda^{n-1}$$

Model Problem: Incompressible Navier–Stokes

$$\min_{(u,p,\Omega)} J(u,p,\Omega) := \int_{\Omega} f(u,Du,p) \, dA + \int_{\Gamma_0} g(u,D_nu,p,n) \, dS$$

$$\begin{split} dJ(u,p,\Omega)[V] &= \\ &\int_{\Gamma_0} \langle V,n \rangle f(u,Du,p) \ dS \\ &+ \int_{\Gamma_0} \langle V,n \rangle \left[D_{(u,b,p)}g(u,D_nu,p,n) \cdot n + \kappa g(u,D_nu,p,n) \right] \ dS \\ &+ \int_{\Gamma_0} \langle V,n \rangle \left[-\sum_{i=1}^d \left(\frac{\partial g}{\partial u_i} + \mu \frac{\partial \lambda_i}{\partial n} + \sum_{j=1}^d \frac{\partial f}{\partial c_{ij}} n_j \right) \frac{\partial u_i}{\partial n} \right] \ dS \\ &+ \int_{\Gamma_0} \langle V,n \rangle \left[(\operatorname{div}_{\Gamma} \nabla_n g) - \kappa \langle \nabla_n g,n \rangle \right] \ dS \end{split}$$

Fluid Energy Dissipation into Heat

$$\min_{(u,p,\Omega)} \dot{E}(u,\Omega) := \frac{1}{2} \int_{\Omega} \mu \sum_{j,k=1}^{3} \left(\frac{\partial u_k}{\partial x_j} \right)^2 dA$$

Aerodynamic Drag

$$\min_{(u,p,\Omega)} F_D := \int_{\Gamma_0} -\mu \left\langle D_n u, a \right\rangle + p \left\langle n, a \right\rangle \, dS$$

Stephan Schmidt (University of Trier)

Fluid Energy Dissipation: First Order Shape Calculus

a) Stokes

$$d\dot{E}_{S}(u,\Omega)[V] = \int_{\Gamma} \langle V, n \rangle \left[-\mu \sum_{k=1}^{3} \left(\frac{\partial u_{k}}{\partial n} \right)^{2} \right] dS$$

b) Navier-Stokes

$$d\dot{E}_{NS}(u,\Omega)[V] = \int_{\Gamma} \langle V, n \rangle \left[-\mu \sum_{k=1}^{3} \left(\frac{\partial u_{k}}{\partial n} \right)^{2} - \frac{\partial u_{k}}{\partial n} \frac{\partial \lambda_{k}}{\partial n} \right] dS$$
$$-\mu \Delta \lambda - \rho \lambda \nabla u - \rho \left(\nabla \lambda \right)^{T} u + \nabla \lambda_{p} = -2\Delta u \quad \text{in } \Omega$$
$$div \lambda_{p} = 0 \qquad \text{in } \Omega$$

Second Order Shape Calculus

$$d^2 \dot{E}_{\mathcal{S}}(u,\Omega)[V,W] = I_1 + I_2$$

where

$$I_{1} = \int_{\Gamma} \langle W, n \rangle \left[\operatorname{div} V \left(-\mu \sum_{i,j=1}^{3} \left(\frac{\partial u_{i}}{\partial x_{j}} \right)^{2} \right) + V_{\Gamma} \nabla \left(-\mu \sum_{i,j=1}^{3} \left(\frac{\partial u_{i}}{\partial x_{j}} \right)^{2} \right) \right]$$
$$I_{2} = \int_{\Gamma} \langle V, n \rangle \left[2\mu \sum_{i=1}^{3} \frac{\partial u_{i}}{\partial n} S \left(\frac{\partial u_{i}}{\partial n} \langle W, n \rangle \right) \right]$$
$$+ \langle W, n \rangle \langle V, n \rangle \frac{\partial}{\partial n} \left(-\mu \sum_{i,j=1}^{3} \left(\frac{\partial u_{i}}{\partial x_{j}} \right)^{2} \right)$$

- Divergence-free Poincaré-Steklov operator S
- Not computable in one sweep

Stephan Schmidt (University of Trier)

Suppose Fourier disturbance (oscillation) of design: $\tilde{q}(x) = e^{i\omega x}$

- First order differential operator: $H\tilde{q} = i\omega\tilde{q}$
- Second order differential operator: $H\tilde{q} = -\omega^2 \tilde{q}$
- Dirichlet to Neumann Map / Poincaré-Steklov: $H\tilde{q} = |\omega|\tilde{q}$

Stokes (analytic) / Navier-Stokes (frequency analysis):

$$H\tilde{q} = (\beta \cdot |\omega| + \gamma)\tilde{q}$$

Approximation:

$$\tilde{H} = -\alpha \Delta_{\Gamma} + id$$

Symbol: 1 + $\alpha \omega^2$
 α chosen to match boundary discretization

Symbol of the Stokes Hessian

Variation in gradient and state given by

$$\delta G\tilde{q} = -2\mu \sum_{k=1}^{2} \frac{\partial u_{k}}{\partial x_{2}} \frac{\partial u_{k}'[\tilde{q}]}{\partial x_{2}}, \quad u_{k}'[\tilde{q}] = \hat{u}_{k} e^{i\omega_{1}x_{1}} e^{\omega_{2}x_{2}}$$

Boundary condition gives

$$\hat{u}_k = \frac{\partial u_i}{\partial x_2}$$

Divergence-Free Poincaré-Steklov in Fourier Space gives

$$\begin{bmatrix} -\mu(-\omega_1^2 + \omega_2^2) & 0 & i\omega_1 \\ 0 & -\mu(-\omega_1^2 + \omega_2^2) & \omega_2 \\ i\omega_1 & \omega_2 & 0 \end{bmatrix} \begin{pmatrix} \hat{u}_1 \\ \hat{u}_2 \\ \hat{p} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Non-Contradiction

Only frequencies non-contradicting the above:

$$\omega_1 = |\omega_2|$$

Stephan Schmidt (University of Trier)

Navier-Stokes: Initial and Optimal Domain

Stephan Schmidt (University of Trier)

Performance: Navier-Stokes

Optimum in iteration 71 vs 350: 80% less iterations

Stephan Schmidt (University of Trier)

Euler Drag Reduction

Minimize Wave Drag

$$\min_{(u,\Omega)} J(u,\Omega) := \int_{\Gamma} \langle p_{\ell}, n \rangle \ dS = \int_{\Gamma} p \cdot n_{\ell} \ dS$$

subject to

$$0 = A_1(V)\frac{\partial U}{\partial x_1} + A_2(V)\frac{\partial U}{\partial x_2} + A_3(V)\frac{\partial U}{\partial x_3} \text{ in } \Omega$$

$$0 = \langle u, n \rangle \text{ on } \Gamma$$

$$u_{\infty} = u \text{ on } \Gamma_{\text{inflow}}$$

- Euler Flux Jacobian: $A_i(V)$
- Conserved variables: $U = (\rho, \rho u_1, \rho u_2, \rho u_3, \rho E)^T$
- Primitive variables: $V = (\rho, u_1, u_2, u_3, p)^T$
- Perfect gas: $p = (\gamma 1)\rho(E \frac{1}{2}(u_1^2 + u_2^2 + u_3^2))$

Shape Derivative for Euler Drag Reduction

$$dF_{\ell}(\Omega)[V] = \int_{\Gamma} \langle V, n \rangle \left[\langle \nabla p_{\ell} | n, n \rangle + \kappa \langle p_{\ell}, n \rangle - \lambda U_{H} \langle Du \cdot n, n \rangle \right] \\ + (p_{\ell} - \lambda U_{H}u) dn[V] dS \\ = \int_{\Gamma} \langle V, n \rangle \left[\langle \nabla p_{\ell} | n, n \rangle - \lambda U_{H} \langle Du \cdot n, n \rangle + \operatorname{div}_{\Gamma} (p_{\ell} - \lambda U_{H}u) \right]$$

Hessian Symbol: 2D: Hq̃ = -ω²q̃
3D: Hq̃ = -ω²q̃ (cf. Arian, Ta'asan 1996), Hq̃ = -(ω₁² + ω₂²)q̃ (here)
MDO: Constraint on contour length and bending stiffness

$$\int\limits_{\Gamma} dS \leq L_0, \quad \int\limits_{\Gamma} (y - y_c)^2 \ dS \geq I_{x_0}$$

Optimized Shape: Supersonic

- DLR Flow Solver TAU
- Unstructured Finite Volume
- Mach 2.00
- Initial NACA0012: $C_D = 9.430 \cdot 10^{-2}$
- Optimal Haack Ogive: $C_D = 4.721 \cdot 10^{-2}$
- Reduction by 49.9%
- 400 design parameters

Optimization History: Wall-Clock-Time

VELA: Very Efficient Large Aircraft Design study for blended wing-body configurations

- 115,673 surface node positions to be optimized
- Perturbation in initial normal direction: V = n
- Planform constant

3D Aircraft Optimization: VELA

ShapeState C_D C_L α M_{∞} 115,67329,297,1754.770 \cdot 10^{-3}1.787 · 10^{-1}1.8°0.85

3D Aircraft Optimization: VELA

Shape
$$C_D$$
 % C_L %
115,673 3.342 \cdot 10⁻³ -30.06% 1.775 \cdot 10⁻¹ -0.67%

Stephan Schmidt (University of Trier)

Convergence History

Stephan Schmidt (University of Trier)

Summary:

- Derivation of shape gradients and Hessians
- Hessian operator symbol approximations
- Good Hessian approximation results in equation $\frac{\text{optimization}}{\text{simulation}} \approx 2.5$
- Structure exploitation CPU wall-clock time improvements:
 - Shape Hessian: 88%
 - Shape derivative: 75%

Conclusions:

- Structure exploitation of shape optimization problems can lead to tremendous speed-ups
- Very large number of shape design parameters are possible