IMPROVING ACCURACY AND ROBUSTNESS OF A DISCRETE ADJOINT METHOD FOR AERODYNAMIC SHAPE OPTIMISATION

J. Peter, P. Trontin, F. Renac, A. Dumont

* ONERA The French Aerospace Lab,

BP72 92322 Châtillon Cedex FRANCE

e-mail: jacques.peter@onera.fr, pierre.trontin@onera.fr, florent.renac@onera.fr, antoine.dumont@onera.fr

ABSTRACT

Onera is in charge of the development of the elsA software [1] one of the two large CFD codes used by Airbus. Discrete adjoint method has been considered for (RANS) flows in elsA, for the computation of the derivatives of aerodynamic functions (C_p , C_l ,...) with respect to design parameters. In this framework, the sensitivity of the objective function $\mathcal{J}(\alpha) = J(W(\alpha), X(\alpha))$ is computed by following equations [2]

$$\frac{d\mathcal{J}}{d\alpha_i} = \frac{\partial J}{\partial X}\frac{dX}{d\alpha_i} + \lambda_J^T \left(\frac{\partial R}{\partial X}\frac{dX}{d\alpha_i}\right) \qquad \left(\frac{\partial R}{\partial W}\right)^T \lambda_J = -\left(\frac{\partial J}{\partial W}\right)^T$$

(where X is the mesh, W is the conservative variable vector, α_i is a component of the design parameter vector α and R is the space dicretisation residual). Discrete adjoint equations are solved by iterative algorithms, such as

$$\frac{\partial R}{\partial W}^{T(APP)} \left(\lambda_J^{(l+1)} - \lambda_J^{(l)} \right) = -\left(\frac{\partial R}{\partial W}^{T(ACC)} \lambda_J^{(l)} + \frac{\partial J}{\partial W} \right), \tag{1}$$

where $\frac{\partial R}{\partial W}^{(ACC)}$ is an accurate approximation of the true jacobian $\frac{\partial R}{\partial W}$, and $\frac{\partial R}{\partial W}^{(APP)}$ a suitable matrix for the convergence of the algorithm.

When the turbulent viscosity is considered constant in the computation of $\frac{\partial R}{\partial W}^{(ACC)}$ equation (1) is not too difficult to solve. Unfortunately the resulting sensitivities $\frac{d\mathcal{J}}{d\alpha_i}$ may be very inaccurate for design parameters that produce, for example, local changes of shape close to a shock-wave. When the turbulent viscosity is differentiated, the discrete adjoint equation may be very difficult to solve for complex geometries. ONERA recently carried out a specific study to tackle this issue for a discretization of (RANS) & (Spalart-Allmaras) model equations. It involves : (a) two types of approximate Jacobian (b) using or not RPM [3] on top of equation (1) (c) two types of artificial dissipation added to the right-hand side of equation (1). Detailed results will be presented for the AS28G wing and the XRF1 wing-body configuration.

Figure 1: AS28G wing - XRF1 wing-body

REFERENCES

[1] L. Cambier, J.-P. Veuillot. An overview of the elsA CFD software for flow simulation and multidisciplinary applications, AIAA Paper Series, Paper 2008-664, 2008.

[2] J. Peter, R.P. Dwight. Improvement of the recursive projection method for linear iterative scheme stabilization based on an approximate eigenvalue problem. Computers and Fluids 39(2010) pp 373-391.

[3] F. Renac. Improvement of the recursive projection method for linear iterative scheme stabilization based on an approximate eigenvalue problem. Journal of Computational Physics 234(14) pp 5739-5752, 2011.