State of the art at DLR in solving aerodynamic shape optimization problems using the discrete viscous adjoint method

J. Brezillon, C. Ilic, M. Abu-Zurayk, F. Ma, M. Widhalm

AS - Braunschweig

28-29 March 2012

Munich, Germany
Motivation: Design of a Future Aviation

- Design of commercial transport aircraft is driven more and more by demands for substantial reduced emissions (ACARE 2020, Flightpath 2050)

- Design based on high fidelity methods promise helping to find new innovative shapes capable to fulfill stringent constraints

- Moderate to highly complex geometry under compressible Navier-Stokes equations with models for turbulence and transition = each flow computation suffers from high computational costs (~ hours)

- Detailed design with large number of design variables (~ 10 to 100 design variables)

- Need to consider physical constraints (lift, pitching moment, ..)

- Geometrical constraints

- Multipoint design
Motivation: Design of a Future Aviation

- Design of commercial transport aircraft is driven more and more by demands for substantial reduced emissions (ACARE 2020)
- Design based on high fidelity methods promise helping to find new innovative shapes capable to fulfill stringent constraints
- Moderate to highly complex geometry under compressible Navier-Stokes equations with models for turbulence and transition = each flow computation suffers from high computational costs (~ hours)
- Detailed design with large number of design variables (~ 10 to 100 design variables)
- Need to consider physical constraints (lift, pitching moment, ..)
- Geometrical constraints
- Multipoint design

Gradient based optimisation strategy
Outline

1. Introduction to the adjoint approach
2. Demonstration on 2D cases
3. Demonstration on 3D cases
4. Conclusion
Introduction to the adjoint approach

Gradient based optimiser requires
- the objective function and the constraints
- the corresponding gradients!

How to compute the gradient:
- with finite differences

\[
\frac{dI}{dD} \approx \frac{I(D + \Delta D) - I(D)}{\Delta D}
\]

with
- \(I \) the function of interest
- \(D \) the shape design variable
Introduction to the adjoint approach

Gradient based optimiser requires
- the objective function and the constraints
- the corresponding gradients!

How to compute the gradient:
- with finite differences
Introduction to the adjoint approach

Gradient based optimiser requires
- the objective function and the constraints
- the corresponding gradients!

How to compute the gradient:
- with finite differences
 - straight forward
 - parallel evaluation
 - n evaluations required
 - accuracy not guaranteed
Introduction to the adjoint approach

Gradient based optimiser requires
- the objective function and the constraints
- the corresponding gradients!

How to compute the gradient:
- with finite differences
- with adjoint approach
Introduction to the adjoint approach

If the flow residual is converged,

$$R(W, X, D) = 0$$

and after solving the flow adjoint equation of the function I

$$\frac{\partial I}{\partial W} + \Lambda^T \frac{\partial R}{\partial W} = 0$$

the derivatives of I with respect to the shape design vector D becomes

$$\frac{dI}{dD} = \frac{\partial I}{\partial X} \frac{\partial X}{\partial D} + \Lambda^T \frac{\partial R}{\partial X} \frac{\partial X}{\partial D}$$

Variation of the function I w.r.t. the shape parameter D by W constant

Variation of the RANS residual R w.r.t. the shape parameter D by W constant
Introduction to the adjoint approach

Computation of the discrete adjoint flow in DLR-Tau code

- Linearization of the cost function:
 - CD, CL, Cm including pressure and viscous comp.; Target Cp
- Linearization of the residuum
 - for Euler flow
 - for Navier-Stokes with SA and k-ω models
- Resolution of the flow adjoint equation with
 - PETSC in 2D and 3D (with or without frozen turbulence)
 - FACEMAT in 2D or 3D (but conv. guarantee only for frozen turbulence)
 - AMG solver with Krylov solver for stabilization (currently under test)

Computation of the continuous adjoint flow in Tau

- Inviscid formulation in central version available
- Cost function: CD, CL, Cm
Computation of the metric terms

Strategy 1: with finite differences

\[
\frac{\partial I}{\partial D} \approx \frac{I(W, D + \Delta D) - I(W, D)}{\Delta D}
\]

\[
\frac{\partial R}{\partial D} \approx \frac{R(W, D + \Delta D) - R(W, D)}{\Delta D}
\]

Need to interpolate the residual on the modified shape

Applications

- RAE 2822 airfoil
- Parameterisation with 30 design variables (10 for the thickness and 20 for the camberline)
- \(M_\infty = 0.73, \alpha = 2.0^\circ, \text{Re}=6.5 \times 10^6 \)
- 2D viscous calculation with SAE model
- Discrete flow adjoint and finite differences for the metric terms
Computation of the metric terms

Strategy 2: the metric adjoint

By introducing the metric adjoint equation

\[
\frac{\partial I}{\partial X} + \Lambda^T \frac{\partial R}{\partial X} + \Phi^T \frac{\partial M}{\partial X} = 0
\]

the derivatives of \(I \) with respect to \(D \) is simply

\[
\frac{dI}{dD} = \Phi^T \frac{\partial X_{surf}}{\partial D}
\]

Consequence: if the design vector \(D \) represents the mesh points at the surface, the gradient of the cost function is equal to the metric adjoint vector

\[
\frac{dI}{dD} = \Phi^T
\]
Metric adjoint: demonstration on 3D viscous case

Wing Body configuration – RANS computation (SA model)

Mach=0.82, Alpha=1.8°, Re=21x10^6

Cp distribution on the surface

Drag Sensitivity on the surface
Introduction to the adjoint approach in the process chain

Starting Geometry
- Parameter change
- Parameterisation
- Mesh procedure
- Flow simulation
- Objective function and constraints

Gradient based optimisation strategy

Optimum?

Flow adjoint
- Metric adjoint
- Parametrisation Sensitivities
- Gradient of the objective function and constraints

Need the gradient!
Introduction to the adjoint approach

Gradient based optimiser:
- Requires the objective function and the constraints
- Requires the gradients!

How to compute the gradient:
- with finite differences
- with adjoint approach
 - add process chain
 - need converged solution
 - not all function available
 - accurate gradient
 - independent of n
2D airfoil shape optimisation
Single Point Optimisation

Optimisation problem
- RAE 2822 airfoil
- Objective: drag reduction at constant lift
- Maximal thickness is kept constant
- Design condition: $M_\infty=0.73$, $CL=0.8055$

Strategy
- Parameterisation with 20 design variables changing the camberline
- Mesh deformation
- 2D Tau calculation on unstructured mesh
- Resolution of adjoint solutions

Results
- No lift change
- 21 states and 21x2 gradients evaluations
- Shock free airfoil
Multi-Point optimisation

Objective
- Maximize the weighted average of L/D at p points
- Equidistant points, equally-weighted
- \(p=1 \) CL=0.76; \(p = 4 \) points in \(CL=[0.46, 0.76] \); \(p = 8 \) points in \(CL=[0.41, 0.76] \)

Constraints
- Lift (to determine the polar points) → implicitly (TAU target lift)
- Pitching moment (at each polar point) → explicitly handled (SQP)
- Enclosed volume constant → explicitly handled (SQP)

Parametrisation
- In total 30 design parameters controlling the pressure and suction sides

Results
Optimisation approach for solving inverse design problem

Principle

- Find the geometry that fit a given pressure distribution

Strategy

- Treat the problem as an optimisation problem with the following goal function to minimise:
 \[\text{Goal} = \int_{\text{Body}} (C_p - C_{p_{\text{target}}})^2 \, dS \]

- Parametrisation: angle of attack + each surface mesh point
- Sobolev smoother to ensure smooth shape during the design
- Mesh deformation
- Use of TAU-restart for fast CFD evaluation
- TAU-Adjoint for efficient computation of the gradients
- Gradient based approach as optimisation algorithm
Test Case: Transonic Condition

\[M_\infty = 0.7; \text{ Re} = 15 \times 10^6 \]

Result
- 400 design cycle to match the target pressure
- Final geometry with blunt nose, very sharp trailing edge, flow condition close to separation near upper trailing edge

Verification: pressure distribution computed on the Whitcomb supercritical profile at AoA=0.6
Next steps

Problems
- All components for efficient optimizations are integrated but still requires more time than the conventional Takanashi approach
- Need to define the full pressure distribution (upper and lower side): lengthy iterations to define a feasible target pressure that ensure minimum drag, a given lift and pitching moment coefficients

Solution
- Combine target pressure at specific area (like the upper part) and “close” the optimisation problem with aerodynamic coefficients

\[
Goal = \int_{Part\ Body} \left(Cp - Cp_{\text{target}} \right)^2 dS + Cd + a(Cl - Cl_{\text{target}}) + b(Cm - Cm_{\text{target}})
\]
Next steps

Preliminary Result

- Pressure distribution at the upper part of the LV2 airfoil
- Drag minimisation at target lift
- Starting geometry is the NACA2412 at M=0.76 ; Re=15’000’000
- Optimized geometry match the target pressure and the required lift, with 17.4% less drag than the LV2 profile

Promising approach for laminar design based on adjoint approach without the need of the derivation of the transition criteria
2D High-Lift problem
Test case specification (derived from Eurolift II project)

Configuration
- Section of the DLR-F11 at $M_\infty=0.2$; $Re=20\times10^6$; $\alpha=8^\circ$

Objective and constraints
- Maximization of $OBJ = \left(\frac{CL_{3D}^3}{CD_{3D}^2} \right)$
- $CL > CL_{\text{initial}}$
- $Cm > Cm_{\text{initial}}$
 with Cm the pitching nose up moment
- Penalty to limit the deployment of the flap and slat
 (constraints from the kinematics of the high-lift system)

Strategy
- Flap shape and position (10 design variables)
- TAU-code in viscous mode with SAE model
- All TAU discretisations have been differentiated
- Krylov-based solver to get the adjoint field
Flap design with NLPQL and adjoint approach

Results

Eurolift II design: optimisation with genetic algorithm + constraints on CLmax
Cruise Configuration DLR F6 wing-body configuration
Wing optimization of the DLR-F6

Configuration
- DLR-F6 wing-body configuration

Objective and constraints
- Minimisation of the drag
- Lift maintained constant
- Maximum thickness constant

Flow condition
- $M_\infty=0.75$; $\text{Re}=3\times10^6$; $CL=0.5$

Approach used
- Free-Form Deformation to change the camberline and the twist distribution – thickness is frozen
- Parametrisation with 42 or 96 variables
- Update of the wing-fuselage junction
- Discrete adjoint approach for gradients evaluation
- Lift maintained constant by automatically adjusting the angle of incidence during the flow computation
Wing optimization of the DLR-F6

Results

- Optimisation with 42 design variables
 - 20 design cycles
 - 4 gradients comp. with adjoint
 - 8 drag counts reduction

- Optimisation with 96 design variables
 - 32 design cycles
 - 5 gradients comp. with adjoint
 - 10 drag counts reduction
Fuselage optimization of the DLR-F6

Strategy
- Definition of the Free-Form box around the body only
- 25 nodes are free to move (in spanwise direction)
- Update of the wing-fuselage junction
- Gradient based optimizer
- Discrete adjoint approach for gradients evaluation
- Lift maintained constant by automatically adjusting the angle of incidence during the flow computation

Results
- 30 design cycles
- 5 gradients comp. with adjoint
- 20 drag counts reduction !!!
- Lift maintained constant
Fuselage optimization of the DLR-F6
Streamtraces on the body wing
Fuselage optimization of the DLR-F6
Streamtraces on the body wing

Drag optimisation
Conjugate Gradient
Discrete Adjoint
25 design parameters on the body

Dashed line: limit of flow separation on baseline configuration

Tests of WB Configuration in the Onera S2 Facility (2008)
Multi-point wing-body optimisation
Single-Point L/D in 3D: Problem Setup

Objective:
- maximize the lift to drag ratio

Main design point:
- $M = 0.72, \, Re = 21 \cdot 10^6, \, CL = 0.554$.

Constraints:
- lift → implicitly handled (TAU target lift)
- wing thickness → implicitly handled (parametrization)

Parametrization:
- 80 free-form deformation control points on the wing.
- z-displacement, upper/lower points linked
 → 40 design parameters.
Single-Point L/D in 3D: Flow Solution and Sensitivities with adjoint approach
Single-Point L/D in 3D: results

- L/D increased from 12.8 to 15.6 (21% up) at design point.

- Wall clock time: 43 hr on 4×8-core Intel Xeon E5540 nodes.
Multi-Point L/D in 3D: results

- **Main Design point:** $M = 0.82$, $Re = 19.5 \cdot 10^6$, $CL = 0.554$
- **Polar points:** $CL_1 = 0.254$, $CL_2 = 0.404$, $CL_3 = 0.554$

Wall clock time: 87 hr on 4×8-core Intel Xeon E5540 nodes.
Multi-Point L/D in 3D: results

At SP design point ($C_{L3} = 0.554$).
Single / Multi-Point L/D in 3D

Baseline

Single point

Multi-point

cp

0.50
0.35
0.20
0.05
-0.10
-0.25
-0.40
-0.55
-0.70
-0.85
-1.00
Wing flight shape optimisation
Introduction: limitation with classical optimisation (w/o considering structure deformation during the process)

Drag minimisation by constant lift (CL=0.554)

Drag on the resulting flight shape: +36 DC

Optimized Jig Shape
No coupling / After coupling
The coupled aero-structure adjoint

Motivation and formulation

- Aero-structure deformation has to be considered during the optimisation
- Need efficient strategy for fast optimisation
 - Gradient approaches are preferred
- There is a need for an efficient approach to compute the gradients
 - The coupled aero-structure adjoint permits efficient gradient computation

- The coupled adjoint formulation was derived and implemented in TAU and Ansys

- Advantages: huge time reduction and affordability of global sensitivity
Optimization of the wing flight shape

Objective and constraints
- Drag minimisation by constant lift and thickness
- Fluid/Structure coupled computations

Flow condition
- $M_\infty=0.82$; $Re=21 \times 10^6$; $CL=0.554$

Shape parametrisation
- 110 FFD design parameters
- Body shape kept constant
- Wing thickness law kept constant
- Wing shape parametrisation with 40 variables

CFD Mesh
- Centaur hybrid mesh
- 1.7 Million nodes
- Mesh deformation using RBF

CSM Mesh
- 27 Ribs, 2 Spars, Lower & Upper Shell
- 4000 nodes
The coupled adjoint gradients were verified through comparison with gradients obtained by finite differences for Lift and Drag.

The structure is “frozen” (i.e. the structure elements are not changed) but the aero-elastic deformation is considered (flight shape).
Optimization of the wing flight shape

Results
- Optimization converged after 35 aero-structural couplings and 11 coupled adjoint computations
- The optimization reduced the drag by 85 drag counts while keeping the lift and the thickness constant

<table>
<thead>
<tr>
<th>State</th>
<th>Alpha</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>1.797</td>
<td>0.044508</td>
</tr>
<tr>
<td>Optimized</td>
<td>1.752</td>
<td>0.035925</td>
</tr>
</tbody>
</table>
Optimization of the wing flight shape

Results

- Optimization converged after 35 aero-structural couplings and 11 coupled adjoint computations
- The optimization reduced the drag by 85 drag counts while keeping the lift and the thickness constant
Multipoint flight shape optimization, early results
Conclusion / Outlook

- Optimisation based on adjoint approach successfully demonstrated
 - on 2D and 3D cases on hybrid grids
 - from Euler to Navier-Stokes (with turbulent model) flows
 - for inverse design and problems based on aero. coefficients
- Efficient approach to handle detailed aerodynamic shape optimisation problems involving large number of design parameters
- The coupled aero-structure adjoint is the first step for MDO

- Next steps toward design capability of a future aviation:
 - More efficiency in solving 3D viscous adjoint flow with turbulence models
 - Efficient computation of the metric terms up to the CAD system
 - Specific cost functions needed by the designer
 (inverse design on specific area, loads distribution...)

> FlowHead Conference > 28 March 2012
Questions ?