
Algebraic multigrid and defect correction for solution 
of adjoint equations in compressible aerodynamics

Malte Förster, Anna Naumovich

FlowHead Conference on Industrial Design Optimization 
for Fluid Flow

Munich, 28-29 March 2012



Outline

 Discrete adjoint equations in DLR TAU code

 Evaluation of linear residual

 Available solution approaches

 Algebraic multigrid

 Inner and outer defect correction

 Results



DLR TAU code. Discretization of flow equations.

TAU is a fully parallelized 2nd-order finite volume flow solver for unstructured 
hybrid grids solving the Reynolds-Averaged Navier-Stokes equations or the
Euler equations. 

Inviscid flux: 2.-order Central Jameson-Schmidt-Turkel Scheme with either
scalar or matrix dissipation.
Viscous flux: Green-Gauss or TSL approximation
Turbulence equations: SAO, SAE, k-omega

Consider a FV discretization of flow equations:

- Flow variables
- Mesh coordinates
- Design variable(s)



Adjoint equations

Minimization problem

- resid. of flow eqs

- mesh deformation

- Flow variables
- Mesh coordinates
- Design variable(s)

Lagrangian

- cost function

constraints



Adjoint equations

Flow adjoint
equation

Gradient
evaluation

Mesh adjoint
equation

In TAU, the derivatives are obtained 
after hand differentiation of all terms



Adjoint equations

Large sparse system of linear 
algebraic equations

2D: neighbors and next-neighbors
of a grid point

Sparsity of A is defined by number of neighbors 
and next neighbors of each grid point.

The amount of next-neighbors is higher on 
unstructired grids and can reach ~ 80!



Linear residual evaluation in TAU code

Linear residual is

How to evaluate Ax ? There are two ways in TAU code:

PETSc residual (full Jac. storage)
Relies on usage of PETSc library

Compute and store A in a sparse
matrix data structure (expensive).
In TAU, this approach gives exact
linear residual.

Facemat residual (Ax on-the-fly)

Pre-compute and store parts of A (~1/3 of full Jac.).
However, due to discretiazion used in TAU it is very 
complicated to obtain the exact linear residual in this 
way.
A.t.m. this approach relies on a number of 
simplifying assumptions concerning
differentiation of dissipation coefficients.
Obtained linear residual is not exact.



Solution approaches in TAU

Linear geometric
multigrid

PETSc library
solvers

Solvers based on
algebraic multigrid

and defect correction
Linear version of TAU MG
RK or LU-SGS smoother
GMRes to stabilize / 
accelerate

Practical experience
- Rather cheap approach

(memory-wise)
- However, convergence of

the solver is not very good
(often slow or stagnates)

ILU(n)-based preconditioners
RCM-reordering
(in parallel combined with Block- 
Jacobi or Additive Schwarz)
Krylov to stabilize / 
accelerate
Practical experience
Very efficient for 2D cases
If converges, it is hard to compete 
with it.
For 3D cases might require high 
levels of ILU, not always affordable
Requires storage of full
Jacobian matrix

Algebraic multigrid solvers
from the SAMG library
(Fraunhofer SCAI) 
combined with inner or 
outer defect correction

1. 3.2. NEW

Practical experience
A.t.m. the solver is being 
evaluated in the institute.
Requires storage of 
1.-order Jacobian matrix



Solvers based on AMG and Defect Correction

 The work on these solvers is a joint work between DLR and Fraunhofer SCAI, 
done within ComFliTe Project.

 We use the SAMG package (product of Fraunhofer SCAI) 

 SAMG package offers a large multi-level environment, based on AMG
methodology, and provides a large set of components needed for a 
definition of various AMG algorithms.



Algebraic multigrid

 The main idea of AMG is the same as of geometric multigrid: efficient interplay
of smoothing and coarse grid correction.

 The only input required by AMG is the matrix and the right-hand side vector
(no need for any geometric information).

 AMG is advantageous for complex domains, unstructured grids, discontinuous 
coefficients and anisotropies.

 Optimal method for scalar elliptic equations: for other types of problems special 
extensions are needed.



Algebraic vs Geometric multigtid

Restriction
&

prolongation

Geometric
multigrid

Algebraic
multigrid



Towards defect correction approach

Observations:

However, 1st-order accurate discretizations could be solved by AMG solvers very efficiently

Direct application of any available AMG configuration to 2nd-order accurate matrices (target 
discretizations) was not successful

Exploit it in a Defect Correction approach



Two approaches

 Perform defect correction with
1st-order matrix on the l.h.s.

 Apply AMG at each iteration
to solve (very approximately) 
the 1st-order system.

 Use ILU(0) as a smoother in AMG

Within AMG, apply defect correction combined
with ILU(0) as a smoother on the finest level

 Apply just ILU(0) as a smoother on coarse
levels (on coarse levels only 1.-order accurate)

Simplified in comparison with the initial version.

Solution of 2nd-order discretizations

Outer defect correction Inner defect correction 
(as a fine level smoother in SAMG)

Additionally, we apply a Krylov method (GMRES) to stabilize each of the approaches



Two approaches

AMG & Outer defect correction AMG & Inner defect correction

ILU(0) as a
smoother

ILU(0) to 
„invert“ A1

ILU(0) as a
smoother



AMG combined with outer Defect Correction

Target 2nd-order problem:

Employ AMG @ each iteration.
In most practical applications 
we only use 1 step of AMG per 
defect correction step.

Auxiliary 1st-order operator:

Mesh points involved in 
1.- and 2.-order Jacobians



Scheme of the solution approach

GMRES
Defect correction

AMG

ILU(0)



Memory cost

Additional memory required for the approach

1. Storage of the 1.-order Jacobian 
(1/4 - 1/3 of 2.-order Jac.)

2. ILU(0) decomposition as a smoother( =1.)
3. AMG Hierarchy (~1/4 of 1.)
4. Krylov (depends on Krylov dimension)

Still less than ILU(0) for the
2.-order accurate Jacobian

Therefore, the approach is cheaper than the cheapest ILU(0)-based PETSc solver

But significantly more expensive than TAU geometric multigrid

As a reference, for a 1 mln. points semi-structured NS mesh, 1 turb. eq.
Storage of  2.-order Jacobian in CSR format for ~ 10 GByte
Storage of  1.-order Jacobian in CSR format ~ 2.5 GByte



Aggregation-based AMG

 Aggregation-based AMG is employed

 It is a favorable version of AMG for convection-dominated problems

 It is a “cheap” version of AMG: fast setup phase & sparse interpolation,
restriction and coarse level operators

 fine “points” are grouped into “clusters”
 piecewise-constant interpolation inside each cluster



AMG coarsening (“clustering“)

Flow direction

weak (small positive) Large negative couplings 
are defined as strong

strong

is defined as 
strong due to the 
neighboring stencil

weak

density-density couplings 
in one grid point

Cluster together

Indicate directions of strong couplings by evaluating the entries of 1.- order 
accurate Jacobian matrix: large negative couplings are defined as strong



AMG coarsening: Flat plate

Zoom region2

Zoom region1 Zoom region3

Flow direction



AMG coarsening and interpolation

Remark: cells are more anisotropic than they are 
shown in this zoom region (rescaled for visualization)

1. Clusters are built normal to the wall 
(due to highly anisotropic cells)

3. Clusters are isotropic: effects of flow
and grid anisotr. compensate each other

2. Clusters are built in flow direction

1. 3.

2.



AMG Coarsening: NACA0012, laminar NS

Fine level mesh

1. coarse level 3. coarse level2. coarse level



AMG smoother

Initially, we used
 Plain ILU(0) as a smoother (sequential)
 Local ILU(0) combined with Block-Jacobi (parallel)

A lot of benefit can be gained from using


 

Not the natural, but reverse Cuthil-McKee ordering for ILU(0)


 

For parallel cases, instead of block-Jacobi, Additive Schwarz method 
(accounts for overlaps). The cost is not so high since ILU is done for 1.-order
Jacobian.

Combining ILU(0) with RCM ordering and ASM results in a much more powerful
smoother and in most cases speeds up convergence of the whole approach
significantly



Numerical experiment: VELA, Euler flow



 
1.061.433 pts, unstructured



 
alpha=1,8 



 
Mach=0,85

© DLR-AS



Numerical experiment: VELA, Euler flow

Run time on the CASE cluster:
9 min (18 proc) / 4 min (36 proc) 

For this test case, solution with PETSc
solvers was also successfull
(GMRES +ASM+ILU(0)/ RCM-ordering)
Run time ~3 min (36 proc) 

Convergence of the approach with
18 and 36 MPI processes



Numerical experiment: LANN wing



 
5.163.387 pts, semi-structured grid



 
alpha=0.59 



 
Mach= 0.822, Re =5.43e6



 
SAE turb. Model (1.-order upwind)

© DLR-AS



Numerical experiment: LANN wing

Run time on the CASE cluster:
33 min (32 proc., DC with AMG)
28 min (32 proc., DC with 1-level solver)

For this test case, PETSc solvers as well 
as geometric multigrid failed to converge

Convergence of the approach with
32 MPI processes



Numerical experiment: DLR F6



 
5.836.028 pts, semi-structured grid



 
alpha=0.1



 
Mach= 0.75, Re =3e6



 
SAE turb. Model (1.-order upwind)

© DLR-AS



Numerical experiment: DLR F6

Run time on the CASE cluster:
1h 28 min (32 proc)

Convergence of the approach with
32 MPI processes



Numerical experiment: DPW4



 
11.696.804 pts, semi-structured



 
alpha=2.29948



 
Mach=0.85, Re =5.0e6



 
SAO turb. Model (1.-order upwind)

© DLR-AS



Numerical experiment: DPW4

Run time on the CASE cluster:
1 h (80 proc.) 

For this test case, PETSc solvers failed to 
converge
Geometric multigrid only converged with
frozen turbulence (~7h, 192 proc., 10^-10)

Convergence of the approach with
80 MPI processes



Summary

3 different solution approaches for linear problems are
available in TAU code

- Geometric multigrid
cheap but not very good convergence

- PETSc solvers
very fast if converges
very efficient in 2D
requires storage of full 2.-ord. Jacobian matrix
expensive, sometimes problematic for large cases

- Combination of Defect Correction and AMG 
more expensive that gmg, cheaper than PETSc
requires storage of 1.-order Jacobian
rather good convergence
stable
more extensive testing is needed



Thank you for your attention
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