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Automatic Differentiation Incompressible adjoint AD on industrial CFD codes Summary

Why bother with Ajoints?

Navier Stokes equations, fixed-point iteration to steady state:

R(U(α), α) = 0

Linearisation with respect to a design (control) variable α

∂R

∂U

∂U

∂α
= −∂R

∂α
,

Au = f.

Sensitivity of an objective function L with respect to α

dL

dα
=
∂L

∂α
+
∂L

∂U

∂U

∂α
=
∂L

∂α
+ gTu =

∂L

∂α
+ gTA−1f

∂L
∂α is directly computable, gTu requires an expensive solve for the
perturbation flow field u for each αi.
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The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=
∂L

∂α
+ gTA−1f =

∂L

∂α
+
(
A−T g

)T
f =

∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

ATv = g(
∂R

∂U

)T ∂L
∂R

T

=

(
∂L

∂U

)T
.

From this follows the Adjoint Equivalence

gTu = (ATv)Tu = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation of
fi for each αi.
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Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each
design variable αi.

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the evaluation
of fi for each αi.

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g
incur a similar cost.

• Computing f is of the order of a single explicit sweep,
simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for
large design problems is essentially constant.
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Physical meaning of the adjoint solution: lifting aerofoil

NACA 0012, Ma=0.4, α = 2◦

Sensitivity w.r.t. lift

mass flux y-momentum
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Simple example of AD

Compute ∂y
∂x1

for

y =

[
y1
y2

]
=

[
π cos(3x1 + 2x2 + x3) · π sin(3x1 + 2x2 + x3)
π · sin(3x1 + 2x2 + x3)x1

]

u = 3*x(1)+2*x(2)+x(3)

pi = 3.14

v = pi*cos(u)

w = pi*sin(u)

sum = v + u

y(1) = v * w

y(2) = w*x(1)

gx(1) = 1

gx(2) = gx(3) = 0

gu = 3*gx(1)+2*gx(2)+gx(3)

gv = -gu*pi*sin(u)

gw = gu*pi*cos(u)

gy(1) = gv*w + v*gw

gy(2) = gw*x(1) + gx(1)*w

The initial values in the chain rule need to be seeded, either set at
the beginning of the computation, or computed in a preceding
function call.
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“Transposing” a statement in reverse-mode

Primal statement: y(1) = v*w

forward-mode

gy(1) = gv*w + v*gw


gv
gw
gy1


7

=


1
0 1
w v 0



gv
gw
gy1


6

żn+1 = Enżn

reverse-mode

vb = vb + w*yb(1)
wb = wb + v*yb(1)


vb
wb
yb1


6

=


1 0 w
0 1 v
0 0 0



vb
wb
yb1


7

z̄nEn = z̄n−1

(z̄nEn)T = ETn z̄
T
n = z̄Tn−1
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gv = -gu*pi*sin(u)
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gw = gu*pi*cos(u)

w = pi*sin(u)

gy(1) = gv*w + v*gw

y(1) = v * w

gy(2) = gw*x(1) + gx(1)*w

y(2) = w*x(1)

yb(1) = 1., yb(0) = 0.
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ub = pi*cos(u)*wb -

pi*sin(u)*vb

xb(1) = xb(1) + 3*ub

xb(2) = xb(2) + 2*ub

xb(3) = xb(3) + ub 10 / 41
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Implementation the reverse-mode AD

• For each cost-function we need to seed with ȳi = 1.

• We obtain all the derivatives of yi w.r.t. all x in one
invocation.

• The logic is followed in reverse, hence we need to store or
recompute all the intermediate values needed to compute the
derivatives.
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Development of incompressible adjoint solvers

• In-house code gpde is a compact incompressible CFD code
(5,000 lines) written as a test-bed for developing adjoint N-S
fields.

• Fortran 90/95, using its more modern programming features.

• The algorithm computes laminar/turbulent flow through
complex 2/3D geometries.

• Code design mimicks typical CFD code setup and algorithms,
exploiting support by Automatic differentiation tools to the
maximum.

• Via the makefile, either the primal, primal with tangent or
with adjoint can be built automatically.

• Run-time ratio of adjoint over primal is approximately 2.
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Validation case: VW S-Bend

• Simplified vehicle climatisation duct.

• Uniform flow at inlet, shape modifications only in the bend.

• Objective: total pressure loss. Sensitivities are computed
w.r.t. vertex coordinates.

• Turbulent viscosity is approximated using the Spalart-Allmaras
model. For y+ > 11.225 the standard wall function
approximates the near-wall turbulent viscosity.
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Duct flow case with turb. model, ReH = 60
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Duct flow case with turb. model, ReH = 60

(c) Bottom view (d) Top view
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Duct flow case with turb. model, ReH = 600

(g) Bottom view (h) Top view

18 / 41



Automatic Differentiation Incompressible adjoint AD on industrial CFD codes Summary

Contents

Introduction to Algorithmic Differentiation

Development of incompressible adjoint solvers

AD on industrial CFD codes

Summary

19 / 41



Automatic Differentiation Incompressible adjoint AD on industrial CFD codes Summary

AD on industrial CFD codes

• A number of industrial CFD packages are intending to have
(Star-CCM+) or already have (Fluent 13, OpenFOAM 2.0)
adjoint versions.

• So far, none of the current sensitivity implementations use
automatic differentiation (AD) to generate the sensitivity
algorithm.

• Here we apply AD to incompressible commercial flow solver,
ESI’s ACE+.

• Original / Full Source Code Size: 3000 files, 1.1M lines /
40MB of source code.

• Reduced Kernel Code Size: 680 files, 230K lines / 8MB of
source code, with some Fortran 90 features suppressed or
eliminated.
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AD on industrial CFD codes

• To aid the construction of the sensitivity algorithm, source
code pre- and post-processing is performed either side of
differentiation.

• Pre- and post-processing involve

1. remove dead code in the original source code via C
preprocessor pragmas.

2. reorganise modules, types and procedures in the generated
source code in addition to optimising fixed-point iterators and
introducing library functions where appropriate (such as the
sparse linear solver).

• Source code processing is where the bulk of the work lies in
order to successfully generate adjoint algorithms using AD,
but the tools are very difficult to implement.
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AD on industrial CFD codes: flow-graph
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Pre-processing

• This task identifies and extracts the relevant source code
which needs to be differentiated from the entire program
source code.

• For large programs (100,000+ lines) this becomes tedious and
error-prone to perform manually.

• By making use of the call-graph generated by AD tool
Tapenade, the tedium of tracing dependencies is removed.

• Knowledge is still required to know which dependent routines
are non-essential so can be ignored.
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Pre-processing: example of call tree to be pruned

24 / 41



Automatic Differentiation Incompressible adjoint AD on industrial CFD codes Summary

Pre-processing: pruning algorithm

Identify the routine (and its
file) to be differentiated

Process the source code using
tapenade -html -process <files>

to generate the dependency graph
and write it to an html file

Parse the dependency graph
file extracting the names of
modules and procedures and
find the files which contain
their implementations

Insert pragmas to strip out re-
dundant source code sections
then preprocess (cpp)

Augment file name(s) with an
underscore (add file to ac-
tive group)

Automated task

Manual task

Empty file list?

Start

Stop

No

Yes
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Pre-processing: primal source equipped with pragmas

module matr i x u t i l s m
contains

#i f n d e f STRIP AD
! ! pa s s i v e
subroutine pr in t mat r i x (mat)

. . .
end subroutine
#end i f

! ! a c t i v e non−d i f f e r e n t i a b l e
function c o o t o c s r ( i , j , ja , i a ) result ( k i j )
#i f n d e f STRIP AD

. . .
#e l s e

k i j = 0 ! r e t a i n a t r i v i a l dependency
#end i f
end function

! ! a c t i v e d i f f e r e n t i a b l e
subroutine matr ix setup ( a i j , phi , ja , ia , r e s )

. . .
#i f n d e f STRIP

i f ( u s e advanced f ea ture ) ca l l adv f ea tu r e ( )
#end i f
end subroutine
end module
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Differentiation problems

• We use the source-transformation tool Tapenade that can
handle F90.

• There has been significant progress with Tapenade, but the
user cannot expect the AD tool to run as robustly as the
compiler.

• In the current version 3.6 we need to work around the
following issues:

1. using save as an attribute of a module scope causes
incomplete differentiation,

2. the case default must be the last case,
3. the differentiation of statements involving pointers is under

development.
4. differentiation of modules creates a complete copy, which

causes problems with use:only statements.
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Post-processing of AD’ed code

1. inherit original modules into their generated derivative modules,

2. purge generated code of all definitions of primal equivalent routines
and data (except private data),

3. ensure that all references to primal routines and data refer to
original code and not to equivalent generated code,

4. identify and remove generated derivative type definitions and replace
associated declarations using that type with the original type,

5. for the adjoint of linear system solvers, use the hand coded
alternative (this must be properly converged at each invocation),

6. in adjoint code, identify fixed-point iterations, reconfigure it to
record once and restore once active primal variables,

7. in adjoint code, identify active quantities which can be assumed to
behave like constants and remove their associated adjoint
computation.
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module pdes m b
use base m b

character ( 3 ) , private : : fmt=” c s r ”

type : : pde t
real , dimension ( : ) , &

allocatable : : phi , rhs
real : : reduc
integer : : max i ter

end type

type : : pde t b
real , dimension ( : ) , &

allocatable : : phi , rhs
end type

type ( pde t ) : : pres , v e l
type ( pde t b ) : : p re s b , v e l b

contains

subroutine n av i e r s t o k e s c b ( )
. . .

end subroutine

subroutine nav i e r s t o k e s b ( )
ca l l g r ad i e n t c b ( )
ca l l s e tup mat rh s c b ( )
ca l l s o l v e c b ( )

ca l l s o l v e b ( )
ca l l s e tup b ( )
ca l l g r ad i en t b ( )

end subroutine
end module

module pdes m b
use pdes m ! import o r i g i n a l
use base m b

character ( 3 ) , private : : fmt=” c s r ”

type ( pde t ) : : p re s b , v e l b

contains

subroutine nav i e r s t o k e s b ( )
ca l l grad i ent ( )
ca l l setup mat rhs ( )

! A. x = b :
! not necessary s ince a
! f i x e d po in t i s assumed
! to have been reached
! c a l l s o l v e c b ( )

! a d j o i n t o f A. x = b :
! manual implementat ion

ca l l s o l v e r e v ( )

ca l l s e tup b ( )
ca l l g r ad i en t b ( )

end subroutine
end module

Generated code (Tapenade) Modified (in-place) generated code

module pdes m
use base m

character ( 3 ) , &
private : : fmt=” c s r ”

type : : pde t
real , dimension ( : ) , &

allocatable : : phi , rhs
real : : reduc
integer : : max i ter

end type

type ( pde t ) : : pres , v e l

contains

subroutine nav i e r s t o k e s ( )
. . .

end subroutine
end module

Original code
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ACE+ differentiation

• Reduced Kernel Code Size: 680 files, 230K lines / 8MB of
source code.

• Using tapenade Version 3.6 (September 2011).

• Memory: 500-900MB RAM, 2.0-2.5GB VM.

• CPU Time: 10 minutes on Intel i5 Equivalent.
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tangent-linear ACE+, laminar channel

Rectangular channel, with aspect ratio of 20, and with 10m/s inlet
on the left, fixed-pressure outlet on the right, and no-slip walls on
the top and bottom.
Sensitivity of velocity integral wrt perturbation in uniform inlet
velocity.

u-velocities, domain scaled by 1/10 in the x-direction
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tangent-linear ACE+, laminar channel

pressure field
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tangent-linear ACE+, laminar channel results

pressure sensitivity to inlet velocity perturbation
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tangent-linear ACE+, laminar channel results

pressure field
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tangent-linear ACE+, S-Bend testcase

S-Bend testcase, tangent-linear discrete solution, pressure
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tangent-linear ACE+, S-Bend testcase

Pressure sensitivity to inlet variation
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Summary

• A complete methodology has been devised to prepare,
differentiate and post-process source code which is largely
automated.

• Fortran 90/95 is well supported by source transformation AD
tools, large industrial codes can be tackled.

• Application to steady simulations is available for industrial
beta evaluation within 6 months.
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