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Rationale

Continuous Adjoint Solver within PAM-FLOW
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Continuous Adjoint Solver within PAM-FLOW

Discrete Adjoint solver interfaced with CFD-ACE+

Morphing



Different problematics:

Rationale

global optimization
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One would like to improve the performance of some given 
design wrt some criterion: the “cost function”

may be lift, drag..

design parameters may be nodes coordinates, CAD parameters, level set 
position..

Rationale
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position..

Standard numerical simulation provides a way to evaluate a 
design “a posteriori”

Optimal design tools automatically select the best (or at least a 
better) design wrt some given criterion



Different optimization methods:

non-gradient based (e.g. genetic algorithms): slow but may succed in 
finding a global optimum

gradient-based: quicker but stop as soon as a local optimum is found

Rationale
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Different approaches for computing the gradient:

by Finite Differences � PAM-OPT

by using the adjoint state � PAM-FLOW Adjoint Solver, i-adjoint

Rationale
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by using the adjoint state � PAM-FLOW Adjoint Solver, i-adjoint

Both have their pro and cons



By Finite Differences:

Flexible, black box tool: very generic, no knowledge on the underlying 
application solver is needed

But requires a number of runs proportional to the number of design 
parameters

Rationale
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parameters

Not sustainable when it tends to be large (e.g. free shape optimization)

In pratic, used together with a surrogate model (for CPU savings), which 
introduces further approximation and complexity
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By using the adjoint state:

Less generic: does require some knowledge of the underlying application 

Rationale
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Less generic: does require some knowledge of the underlying application 
code

More complicated � requires a dedicated tool, the so-called « adjoint 
solver »

But requires only one primal+one adjoint run � cost is independant on the 
number of design parameters

Well suited for shape optimization



2 different approaches for computing the adjoint state:

Linearize/Dualize then Discretize � Continuous Adjoint Method

Rationale
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Linearize/Dualize then Discretize � Continuous Adjoint Method

Discretize then Linearize/Dualize � Discrete Adjoint Method



ESI adjoint solutions:

Continuous adjoint solver embedded into PAM-FLOW (vertex-centered FV) 

Rationale
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Continuous adjoint solver embedded into PAM-FLOW (vertex-centered FV) 
(2006)

Discrete adjoint library interfaced with CFD-ACE+ (cell-centered 
FV,multiphysics) (2012)



Incompressible Navier-Stokes:
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Optimization set-up:
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KKT theory:
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KKT theory:
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Flow equations + BCsFlow equations + BCs

Continous adjoint solver
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Adjoint equations:

Continous adjoint solver
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Adjoint bcs:

Continous adjoint solver
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Shape derivative:

Continous adjoint solver
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keep the flow / change the shapekeep the flow / change the shape keep the shape / change the flowkeep the shape / change the flow



Application to Aero Force:

Continous adjoint solver
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Pressure Drop:

Continous adjoint solver
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Some complication: turbulent viscosity

Continous adjoint solver
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Modified adjoint equations:

Continous adjoint solver
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Modified adjoint bcs:

Continous adjoint solver
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Modified shape derivative:

Continous adjoint solver
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More complications..

turbulence models (k-epsilon,Spalart-Allmaras..)

law of the wall

Continous adjoint solver
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natural convection (+Temperature equation)

MHD

Chemistry ..



Continous adjoint solver
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Pros:

Relatively easy-to-implement

Independant of the numerical scheme of the application code

CPU and memory efficient

Continuous adjoint solver
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Cons:

Gradient inconsistency: the computed adjoint state is not the adjoint state of 
the computed physical field

Requires by hand differentiation of the underlying physical model � may be 
tricky (turbulence models..)

High cost maintenance: any model addendum in the primal solver requires a 
specific development effort counterpart in the adjoint solver



Enriched with converters in 2010 so that it can accomodate 
results of alternative CFD codes

the CFD may be run using OpenFOAM or Star-CCM+ and the adjoint using 
PAM-FLOW

Continuous adjoint solver
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Only tet mesh

Integrated within ESI Visual process environment

Both academic and industrial proof of value



Drag reduction: 13% after 1 optimization cycleDrag reduction: 13% after 1 optimization cycle

Continuous adjoint solver
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Blue: Original surfaceBlue: Original surface
Magenta: optimized surfaceMagenta: optimized surface

  

Initial design 

 

 

Optimized design 

 

Drag coefficient 

 

 

0.342 

 

0.298 

 

Predicted drag coefficient:

Cd = 0.342



Continuous adjoint solver
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-30%



Continuous adjoint solver

Copyright © ESI Group, 2012. All rights reserved.



Optimization set-up:

Discrete adjoint solver

mesh nodes mesh nodes 

coordinatescoordinates
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KKT theory:

Discrete adjoint solver
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Discrete vs. Continuous shape derivative:
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Indeed:

Discrete adjoint solver
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keep the flow / change the shapekeep the flow / change the shape advect the flow as shape changes advect the flow as shape changes 
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Similarily:

Discrete adjoint solver
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Hence:
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3 choices for computing the shape derivative:
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The adjoint matrix:

Discrete adjoint solver
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Typical block stencil:

Huge, (not so) sparse, unsymmetric, undefinite matrix

Hard to solve (saddle-point system)



Use an optimal preconditioner (DDM, Multigrid, Subdomain 
deflation)

Discrete adjoint solver
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If matrix has to be assembled, out of coring may be needed
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Discrete adjoint solver
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Pros:

Gradient consistency: the computed adjoint state is the real adjoint of the 
computed physical field

Discrete adjoint solver
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Cons:

Depends on the very numerical scheme of the application code

How to build the discrete adjoint operator?



Different approaches for building the discrete adjoint operator:

By hand

Discrete adjoint solver
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Automatic (Algorithmic) Differentiation



By hand:

Requires an exhaustive knowledge of the primal solver

Discrete adjoint solver
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tedious and error prone!

High maintenance cost

Each application solver adjoint derivation has to be adressed independantly



By Algorithmic Differentiation:

The source code istelf is differentiated

2 modes: direct / reverse

2 approaches: source transformation / operator overloading

Discrete adjoint solver
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Pros & cons:

Low cost maintenance: the code is differentiated once and for all (no further 
effort for accomodating newly developped models in the primal solver) 

But each application solver adjoint derivation has to be adressed mostly 
independantly

May turn to be tedious and time consuming depending on the code structure 
and programming language

Very invasive: requires full access to the source code

Severe CPU efficiency and memory consumption challenges



Academic validation against FD

Discrete adjoint solver

Dynamic library interfaced with CFD-ACE+
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Any mesh topology

Limitations:

Not yet parallelized

Enriched with converters so that it can accomodate results of 
alternative CFD codes

the CFD may be run using OpenFOAM or Star-CCM+ and the adjoint using 
PAM-FLOW



Discrete adjoint solver

A word on rigorous validation:

-step_factor*Computed_Gradient
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Relative error :=100* ABS(Expected_Improvement-Effective_Improvement)
/Effective_Improvement

Expected Improvement := step_factor*Computed_Gradient_Norm**2

Effective Improvement := I_oldshape-I_newshape

I_oldshape
I_newshape



Discrete adjoint solver

Airfoil 
Tet

Airfoil 
Hex 

Aifoil 
Hex

S-Bend 
(Viscart)

Ahmed 
Body 
(Viscart)
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Physics Laminar Laminar Frozen 
Turbulent

Frozen 
Turbulent

Frozen 
Turbulent 

Relative 
error (%)

0,07 0,14 0,37 5,15 0,11



Discrete adjoint solver
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At first bound interior node displacement to sruface nodes one 
thanks to harmonic mapping (ALE-like):

Minimizes mesh isotropic distortion 

Morphing
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Not good for boundary layers 
(anisotropic mesh)

Use rigidification instead : 

Morphing
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Then combine Laplace and rigidification:

Morphing

 =∆− x 0δ
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For boundary nodes, apply LSQ morphing:

Sample the surface nodes

Apply LSQ operator (exact for polynomial up to 

Morphing

( ) ( )j
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surf yx δδ →
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Apply LSQ operator (exact for polynomial up to 
desired degree)

∑
∈

Φ=
Sj

j

j

ssurf xyxx )()( δδ

( ) 









−==Φ ∑

∈
≤≤

Si

iinii xxWJx
2

1
)()(minarg)( λλ ε

k

nodei

kiki pxpxp ∀=∑ )()(λ subject to



Finally, adapt the shape derivative accordingly via chain 
rule:

:

Morphing
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Do not forget this step, otherwise the gradient is wrong !

:



Morphing option available both within PAM-
FLOW Continuous Adjoint Solver and ACE+ 
Discrete one

Morphing
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:

Limited to small displacements

:

Additionaly, the tool provides the value of the maximal 
step factor so that all volume remain positive

:



Copyright © ESI Group, 2012. All rights reserved.


