en get it right ${ }^{\circledR}$

Continuous and Discrete adjoint methodologies within ESI CFD solvers

Agenda

- Rationale
- Continuous Adjoint Solver within PAM-FLOW
- Discrete Adjoint solver interfaced with CFD-ACE+
- Morphing
get it right ${ }^{\circledR}$

Rationale

- Different problematics:

Rationale

- One would like to improve the performance of some given design wrt some criterion: the "cost function"
- may be lift, drag..
- design parameters may be nodes coordinates, CAD parameters, level set position..
- Standard numerical simulation provides a way to evaluate a design "a posteriori"
- Optimal design tools automatically select the best (or at least a better) design wrt some given criterion

Rationale

- Different optimization methods:
- non-gradient based (e.g. genetic algorithms): slow but may succed in finding a global optimum
- gradient-based: quicker but stop as soon as a local optimum is found

$$
F(x, y)=\sin \left(\frac{1}{2} x^{2}-\frac{1}{4} y^{2}+3\right) \cos \left(2 x+1-e^{y}\right)
$$

Rationale

- Different approaches for computing the gradient:
- by Finite Differences \rightarrow PAM-OPT
- by using the adjoint state \rightarrow PAM-FLOW Adjoint Solver, i-adjoint
- Both have their pro and cons
get it right ${ }^{\circledR}$

Rationale

- By Finite Differences:
- Flexible, black box tool: very generic, no knowledge on the underlying application solver is needed
- But requires a number of runs proportional to the number of design parameters
- Not sustainable when it tends to be large (e.g. free shape optimization)
- In pratic, used together with a surrogate model (for CPU savings), which introduces further approximation and complexity

$$
\nabla_{\beta} I \approx\left(\frac{I_{\beta_{1}+\delta \beta_{1}}-I_{\beta_{1}}}{\delta \beta_{1}}, \frac{I_{\beta_{2}+\delta \beta_{2}}-I_{\beta_{2}}}{\delta \beta_{2}}, \ldots, \frac{I_{\beta_{n}+\delta \beta_{n}}-I_{\beta_{n}}}{\delta \beta_{n}}\right)
$$

Rationale

- By using the adjoint state:
- Less generic: does require some knowledge of the underlying application code
- More complicated \rightarrow requires a dedicated tool, the so-called « adjoint solver »
- But requires only one primal+one adjoint run \rightarrow cost is independant on the number of design parameters
- Well suited for shape optimization

Rationale

- 2 different approaches for computing the adjoint state:
- Linearize/Dualize then Discretize \rightarrow Continuous Adjoint Method
- Discretize then Linearize/Dualize \rightarrow Discrete Adjoint Method

Rationale

- ESI adjoint solutions:
- Continuous adjoint solver embedded into PAM-FLOW (vertex-centered FV) (2006)
- Discrete adjoint library interfaced with CFD-ACE+ (cell-centered FV,multiphysics) (2012)
get it right ${ }^{\circledR}$

Continous adjoint solver

- Incompressible Navier-Stokes:

Continous adjoint solver

- Optimization set-up: volumic cost surfacic cost
function
$!I\left(\Omega, v^{\alpha}, p, S_{\beta}^{\alpha}, \tau_{\beta}^{\alpha}\right)=\int_{\Omega}^{\prime} j\left(v^{\alpha}, p, S_{\beta}^{\alpha}\right),+\int_{\partial \Omega}^{\prime} i\left(v^{\alpha}, \tau_{\beta}^{\alpha} n^{\beta}, n^{\alpha}\right) \vdots$
with $S_{\beta}^{\alpha}=\partial_{\beta} \nu^{\alpha}$ and $\tau_{\beta}^{\alpha}=p \delta_{\alpha \beta}-\eta \partial_{\beta} \nu^{\alpha}$
s.t. N - S equations +bcs

Continous adjoint solver

get it right® ${ }^{\circledR}$

- KKT theory:
----- flow eqs
$\ell\left(\Omega, v^{\alpha}, p, S_{\beta}^{\alpha}, \tau_{\beta}^{\alpha}, w^{\alpha}, q, b_{N}, b_{D}, b_{N}^{t}, b_{D}^{n}, c_{\beta}^{\alpha}, d_{\beta}^{\alpha}\right)=$
----- constitutive relations

$$
\begin{aligned}
& +\int_{\Omega}\left(S_{\beta}^{\alpha}-\partial_{\beta^{\prime}} v^{\alpha}\right) d_{\beta_{j}}^{\alpha}
\end{aligned}
$$

Continous adjoint solver

- KKT theory:

$$
\begin{aligned}
& \frac{\partial \ell\left(\Omega, v^{\alpha}, p, S_{\beta}^{\alpha}, \tau_{\beta}^{\alpha}, q, w^{\alpha}, b_{D}, b_{N}, b_{N}^{t}, b_{D}^{n}, c_{\beta}^{\alpha}, d_{\beta}^{\alpha}\right)}{\partial\left(w^{\alpha}, q, b_{D}, b_{N}, b_{N}^{t}, b_{D}^{n}, c_{\beta}^{\alpha}, d_{\beta}^{\alpha}\right)}=0 \longmapsto \\
& \text { Flow equations }+B C s \\
& \frac{\partial \ell\left(\Omega, v^{\alpha}, p, S_{\beta}^{\alpha}, \tau_{\beta}^{\alpha}, q, w^{\alpha}, b_{D}, b_{N}, b_{N}^{t}, b_{D}^{n}, c_{\beta}^{\alpha}, d_{\beta}^{\alpha}\right)}{\partial\left(v^{\alpha}, p, S_{\beta}^{\alpha}, \tau_{\beta}^{\alpha}\right)}=0 \longmapsto \text { Adjoint equations + BCs } \\
& \frac{\partial \ell\left(\Omega, v^{\alpha}, p, S_{\beta}^{\alpha}, \tau_{\beta}^{\alpha}, q, w^{\alpha}, b_{D}, b_{N}, b_{N}^{t}, b_{D}^{n}, c_{\beta}^{\alpha}, d_{\beta}^{\alpha}\right)}{\partial \Omega} \longrightarrow \begin{array}{l}
\text { Shape derivative (0 at } \\
\text { optimum })
\end{array}
\end{aligned}
$$

Continous adjoint solver

- Adjoint equations:

$$
\left\{\begin{array}{l}
-v^{\beta} \partial_{\alpha} v_{*}^{\beta}-v \cdot \nabla v_{*}^{\alpha}-\nabla \cdot\left(\eta \nabla v_{*}^{\alpha}\right)+\nabla p_{*}=\left\{\begin{array}{c}
\left.\partial_{\beta}\left(\frac{\partial j}{\partial S_{\beta}^{\alpha}}\right)\right\}-\frac{\partial j}{\partial v^{\alpha}} \\
\nabla \cdot v_{*}= \\
\frac{\partial j}{\partial p} \\
\hdashline
\end{array},\right. \\
\begin{array}{l}
\text { cost function dependant } \\
\text { source terms }
\end{array}
\end{array}\right.
$$

Continous adjoint solver

- Adjoint bcs:
----- cost function dependant

$$
\begin{aligned}
& \text { source terms }
\end{aligned}
$$

get it right ${ }^{\oplus}$

Continous adjoint solver

- Shape derivative: $\frac{\partial \ell}{\partial \Omega}=\frac{\partial I}{\partial \Omega}-\int_{\Gamma_{\text {nall }}}\left\{\eta\left(\nabla v^{\alpha} \cdot \nabla v_{*}^{\alpha}\right)+S_{\beta}^{\alpha} \frac{\partial j}{\partial S_{\beta}^{\alpha}}\right\}(\varphi \cdot n)$

keep the flow / change the shape

keep the shape / change the flow

Continous adjoint solver

cost function

- Application to Aero Force: $I=\int_{\Gamma}\left\{p(n \cdot d)-\eta \partial_{n}(v \cdot d)\right\}=\int_{\Gamma}\left(\tau^{\alpha} \cdot n\right)_{\beta} \cdot d$

$$
\left\{\begin{array}{l}
-v^{\beta} \partial_{\alpha} v_{*}^{\beta}-v \cdot \nabla v_{*}^{\alpha}-\nabla \cdot\left(\eta \nabla v_{*}^{\alpha}\right)+\nabla p_{*}=0 \\
\nabla \cdot v_{*}=0
\end{array}\right.
$$

source term
adjoint system
$\frac{\partial \ell}{\partial \Omega}=-\int_{\Gamma_{\text {wall }}} \eta\left(\nabla v^{\alpha} \cdot \nabla v_{*}^{\alpha}\right)(\varphi \cdot n)$

$$
\left\{\begin{array}{l}
v_{*}=-d \text { on } \Gamma_{\text {wall }} \\
v_{*}=0 \quad \text { on } \Gamma_{\text {in }} \cup \Gamma_{\text {ground }} \\
p_{*} n-\eta \partial_{n} v_{*}=\left(v \cdot v_{*}\right) n+(v \cdot n) v_{*} \quad \text { on } \Gamma_{\text {out }} \\
v_{*} \cdot n=0 ;\left(\eta \partial_{n} v_{*}\right) \cdot t^{\alpha}=0, \alpha=1,2 \quad \text { on }\left.\Gamma_{\text {synn }}\right|_{1}
\end{array}\right.
$$

Continous adjoint solver

- Pressure Drop: $I=+\int_{\Omega} \eta\left(\nabla v^{\alpha}\right)^{2}=-\int_{\Gamma_{n} u \Gamma_{\omega u}}\left\{p+v^{2} / 2\right\}(v \cdot n)-\eta \partial_{n} v^{2}=-\int_{\Gamma_{\text {naul }}} v^{2} / 2(v \cdot n)+\left(\tau^{\alpha} \cdot n\right)_{\beta} \cdot v$

$$
\left\{\begin{array}{l}
-v^{\beta} \partial_{\alpha} v_{*}^{\beta}-v \cdot \nabla v_{*}^{\alpha}-\nabla \cdot\left(\eta \nabla v_{*}^{\alpha}\right)+\nabla p_{*}=0 \\
\nabla \cdot v_{*}=0
\end{array}\right.
$$

adjoint system

Continous adjoint solver

Smagorinsky model

- Some complication: turbulent viscosity

$$
\left\{\begin{array}{l}
\eta=\eta+\eta_{t} \\
\eta_{1}=g\left(s_{\beta}^{\alpha}\right)
\end{array}\right.
$$

- KKT: $\quad \ell\left(\Omega, v^{\alpha}, p, S_{\beta}^{\alpha}, \tau_{\beta}^{\alpha}, w^{\alpha}, q, b_{N}, b_{D}, b_{N}^{t}, b_{D}^{n}, c_{\beta}^{\alpha}, b_{\beta}^{\alpha}, \eta_{1}, \mu_{i}^{\prime}\right)=$

Continous adjoint solver

- Modified adjoint equations:

volumetric cost function is allowed to depend on turbulent viscosity

Continous adjoint solver

- Modified adjoint bcs:

$$
\left\{\begin{array}{l}
v_{*}=-\frac{\partial i}{\partial\left(\tau^{\alpha} \cdot n\right)} \text { on } \Gamma_{\text {in }} \cup \Gamma_{\text {wall }} \\
p_{*} n-\eta \partial_{n} v_{*}=\left(v \cdot v_{*}\right) n+(v \cdot n) v_{*}+\frac{\partial i}{\partial v}+\left(\frac{\partial j}{\partial S_{\beta}^{\alpha}} n^{\beta}\right)_{\alpha}^{\prime}\left(\frac{\partial g}{\partial S_{\beta}^{\alpha}} n^{\beta}\right)_{\eta_{* \prime}}^{\prime} \text { on } \Gamma_{\text {out }} \\
v_{*} \cdot n=-\frac{\partial i}{\partial\left(\tau^{\alpha} \cdot n\right)} \cdot n ;\left(\eta \partial_{n} v_{*}\right) \cdot t^{\alpha}=-\frac{\partial i}{\partial v} \cdot t^{\alpha}-\left(\frac{\partial j}{\partial S_{\beta}^{\alpha}} n^{\beta}\right)_{\alpha} \cdot t^{\alpha}+t^{\alpha} \cdot\left(\frac{\partial g}{\partial S_{\beta}^{\alpha}} n^{\beta}\right)_{\eta_{* ;},}^{\prime} \alpha=1,2 \text { on } \Gamma_{s y m}
\end{array}\right.
$$

Continous adjoint solver

- Modified shape derivative:
new term

Continous adjoint solver

- More complications..
- turbulence models (k-epsilon,Spalart-Allmaras..)
- law of the wall
- natural convection (+Temperature equation)
- MHD
- Chemistry ..

Continous adjoint solver

Continuous adjoint solver

- Pros:
- Relatively easy-to-implement
- Independant of the numerical scheme of the application code
- CPU and memory efficient
- Cons:
- Gradient inconsistency: the computed adjoint state is not the adjoint state of the computed physical field
- Requires by hand differentiation of the underlying physical model \rightarrow may be tricky (turbulence models..)
- High cost maintenance: any model addendum in the primal solver requires a specific development effort counterpart in the adjoint solver

Continuous adjoint solver

- Enriched with converters in 2010 so that it can accomodate results of alternative CFD codes
- the CFD may be run using OpenFOAM or Star-CCM+ and the adjoint using PAM-FLOW
- Both academic and industrial proof of value
- Integrated within ESI Visual process environment
- Only tet mesh

Continuous adjoint solver

Continuous adjoint solver

Objective_Fctn

Continuous adjoint solver

Discrete adjoint solver

- Optimization set-up:
- KKT theory: $\quad \ell\left(x, u, u^{*}\right)=I(x, u)+\left(u^{*}\right)^{T} R(x, u)$

Discrete adjoint solver

- KKT theory:

$$
\begin{aligned}
& \frac{\partial \ell\left(x, u, u^{*}\right)}{\partial u}=\frac{\partial I(x, u)}{\partial u}+\left(\frac{\partial R(x, u)}{\partial u}\right)^{T} u^{*}=0 \Longrightarrow \begin{array}{c}
\text { discrete } \\
\text { adjoint } \\
\text { equation }
\end{array} \\
& \frac{\partial \ell\left(x, u, u^{*}\right)}{\partial x}=\frac{\partial I(x, u)}{\partial x}+\left(\frac{\partial R(x, u)}{\partial x}\right)^{T} u^{*} \longrightarrow \begin{array}{c}
\text { sensitivity } \\
\text { vector }
\end{array}
\end{aligned}
$$

Discrete adjoint solver

- Discrete vs. Continuous shape derivative:

Discrete adjoint solver

keep the flow / change the shape

advect the flow as shape changes

- They are connected:

$$
\left(\frac{\partial I}{\partial x}\right)^{T} \rightarrow \frac{\partial I}{\partial \Omega}-\left(\frac{\partial I}{\partial u}\right)(\varphi \cdot \nabla u)-\left(\frac{\partial I}{\partial U_{\text {wall }}}\right)(\varphi \cdot \nabla U)
$$

Discrete adjoint solver

- Similarily: $\quad\left(\frac{\partial R}{\partial x}\right)^{T} u^{*} \rightarrow \frac{\partial\left(R, u^{*}\right)}{\partial \Omega}-\left(\left(\frac{\partial R}{\partial u}\right)^{T} u^{*},(\varphi \cdot \nabla u)\right)-\left(\left(\left(\frac{\partial R}{\partial U_{\text {wall }}}\right)^{T} u^{*},(\varphi \cdot \nabla U)\right)\right.$
- Hence:

$$
\begin{aligned}
& \frac{\partial \ell}{\partial x} \rightarrow \frac{\partial I}{\partial \Omega}-\left(\left(\frac{\partial R}{\partial U_{\text {wall }}}\right)^{T} u^{*}+\left(\frac{\partial I}{\partial U_{\text {wall }}}\right)^{T},(\varphi \cdot \nabla U)\right) \\
&+\underbrace{\frac{\partial\left(R, u^{*}\right)}{\partial \Omega}}_{\rightarrow 0}-(\{\underbrace{\left(\frac{\partial R}{\partial u}\right)^{T} u^{*}+\left(\frac{\partial I}{\partial u}\right)^{T}}_{0}\},(\varphi \cdot \nabla u)) \\
& \frac{\partial l}{\partial x} \approx \frac{\partial I}{\partial \Omega}-\left(\left(\frac{\partial R}{\partial U_{\text {wall }}}\right)^{T} u^{*}+\left(\frac{\partial I}{\partial U_{\text {wall }}}\right)^{T},(\varphi \cdot \nabla U)\right)
\end{aligned}
$$

Finally:

Discrete adjoint solver

- 3 choices for computing the shape derivative:

Discrete adjoint solver

- The adjoint matrix:
- Typical block stencil:

	2		
2	1	2	
1	0	1	
2	1	2	
	2		

- Huge, (not so) sparse, unsymmetric, undefinite matrix
- Hard to solve (saddle-point system)

Discrete adjoint solver

- Use an optimal preconditioner (DDM, Multigrid, Subdomain deflation)
- Or a segregated-like approach: $\quad P\left(x^{n+1}-x^{n}\right)=\left(\frac{\partial I}{\partial u}\right)^{T}-\left(\frac{\partial R}{\partial u}\right)^{T} x^{n}$

$$
\begin{aligned}
& P^{-1}=\left(\begin{array}{cc}
I & -D_{A}^{-1} B \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & \left(B^{\prime} D_{A}^{-1} B-C\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
B^{\prime} & -I
\end{array}\right)\left(\begin{array}{cc}
\left(D_{A}+A\right)^{-1} & 0 \\
0 & I
\end{array}\right) \\
& D_{A}=\alpha \text { DIAG }
\end{aligned}
$$

- If matrix has to be assembled, out of coring may be needed

Discrete adjoint solver

Discrete adjoint solver

- Pros:
- Gradient consistency: the computed adjoint state is the real adjoint of the computed physical field
- Cons:
- Depends on the very numerical scheme of the application code
- How to build the discrete adjoint operator?

Discrete adjoint solver

- Different approaches for building the discrete adjoint operator:
- By hand
- Automatic (Algorithmic) Differentiation

Discrete adjoint solver

- By h

- F

Discrete adjoint solver

- By Algorithmic Differentiation:
- The source code istelf is differentiated
- 2 modes: direct / reverse
- 2 approaches: source transformation / operator overloading
- Pros \& cons:
- Low cost maintenance: the code is differentiated once and for all (no further effort for accomodating newly developped models in the primal solver)
- But each application solver adjoint derivation has to be adressed mostly independantly
- May turn to be tedious and time consuming depending on the code structure and programming language
- Very invasive: requires full access to the source code
- Severe CPU efficiency and memory consumption challenges

Discrete adjoint solver

- Academic validation against FD
- Dynamic library interfaced with CFD-ACE+
- Any mesh topology
- Enriched with converters so that it can accomodate results of alternative CFD codes
- the CFD may be run using OpenFOAM or Star-CCM+ and the adjoint using PAM-FLOW
- Limitations:
- Not yet parallelized

Discrete adjoint solver

- A word on rigorous validation:

Expected Improvement:= step_factor*Computed_Gradient_Norm**2
Effective Improvement := I_oldshape-I_newshape
Relative error :=100* ABS(Expected_Improvement-Effective_Improvement) /Effective_Improvement

Discrete adjoint solver

	Airfoil Tet	Airfoil Hex	Aifoil Hex	S-Bend (Viscart)	Ahmed Body (Viscart)
Physics	Laminar	Laminar	Frozen Turbulent	Frozen Turbulent	Frozen Turbulent
Relative error (\%)	0,07	0,14	0,37	5,15	0,11

Discrete adjoint solver

Morphing

- At first bound interior node displacement to sruface nodes one thanks to harmonic mapping (ALE-like):
- Minimizes mesh isotropic distortion

$$
\left\{\begin{array}{l}
-\Delta \delta x=0 \\
\delta x=\delta x_{\text {suff }} \quad \text { on } \Gamma_{\text {wall }} \\
\delta x=0 \quad \text { on } \partial \Omega \Gamma_{\text {wall }}
\end{array} \quad \Longrightarrow \delta x_{\text {int }}=K \boldsymbol{\delta} x_{\text {surf }}\right.
$$

get it right ${ }^{\oplus}$

Morphing

- Not good for boundary layers (anisotropic mesh)
- Use rigidification instead :

$$
\delta x_{i \in b l(n)}=\frac{\sum_{j \in N_{i} \cap b l(n-1)}\left(1 /\left\|x_{j}-x_{i}\right\|\right) \delta x_{j}}{\sum_{j \in N_{i} \cap b l(n-1)}\left(1 /\left\|x_{j}-x_{i}\right\|\right)}
$$

Morphing

- Then combine Laplace and rigidification:

$$
\begin{aligned}
& \left\{\begin{array}{l}
-\Delta \boldsymbol{\delta} x=0 \\
\boldsymbol{\delta} x=\boldsymbol{\delta} x_{b l(N)} \quad \text { on } \Gamma_{N} \\
\delta x=0 \quad \text { on } \partial \Omega \backslash \Gamma_{\text {wall }}
\end{array}\right. \\
& \delta x_{i \in b l(n \leq N)}=\frac{\sum_{j \in N_{i} \cap b l(n-1)}\left(1 /\left\|x_{j}-x_{i}\right\|\right) \delta x_{j}}{\sum_{j \in N_{i} \cap b l(n-1)}\left(1 /\left\|x_{j}-x_{i}\right\|\right)}
\end{aligned}
$$

get it right ${ }^{\circledR}$

Morphing

- For boundary nodes, apply LSQ morphing:
- Sample the surface nodes $\left(\delta x_{\text {surf }}^{i}\right) \rightarrow\left(\delta y_{s}^{j}\right)$
- Apply LSQ operator (exact for polynomial up to
 desired degree)

$$
\begin{aligned}
& \delta x_{\text {suif }}(x)=\sum_{j \in S} \delta y_{s}^{j} \Phi_{j}(x) \\
& \left(\Phi_{i}(x)\right)_{1 \leq i \leq n}=\operatorname{argmin}\left(J(\lambda)=\sum_{i \in S} W_{\varepsilon}\left(x-x_{i}\right) \lambda_{l}^{2}\right)
\end{aligned}
$$

subject to $\sum_{\text {inode }} \lambda_{i} p_{k}\left(x_{i}\right)=p_{k}(x) \quad \forall p_{k}$

Morphing

- Finally, adapt the shape derivative accordingly via chain rule:

$$
\frac{\partial \ell}{\partial y_{s}}=\left\{\left(\frac{\partial \ell}{\partial x_{i n}}\right)\left(\frac{\partial x_{i n}}{\partial x_{s u r f}}\right)+\left(\frac{\partial \ell}{\partial x_{\text {surf }}}\right)\right\}\left(\frac{\partial x_{\text {surf }}}{\partial y_{s}}\right)
$$

- Do not forget this step, otherwise the gradient is wrong!

Morphing

- Morphing option available both within PAMFLOW Continuous Adjoint Solver and ACE+ Discrete one
- Limited to small displacements

- Additionaly, the tool provides the value of the maximal step factor so that all volume remain positive

en get it right ${ }^{\circledR}$

www.esi-group.com

