

Optimal Unsteady Flow Control and One-Shot Aerodynamic Shape Optimization using AD

Nicolas R. Gauger, Anil Nemili, Emre Özkaya Computational Mathematics, CCES RWTH Aachen University

(Recent) Work supported by

DFG Priority Program 1253 on Optimization with PDEs DFG Project on Optimal Flow Control BMBF Project DGHPOPT

Bundesministerium für Bildung und Forschung

Ingredients

for Efficient Optimization and Control in Aerodynamics

- Adjoint-based sensitivity evaluation (discrete, continuous, hybrid)
- Checkpointing for unsteady adjoint computation
- Non-loosely coupled (adjoint) PDEs for MDO
- One-shot methods (also called All-at-once, SAND, ...)
- Preconditioning of design equation
- Gradient smoothing
- Multilevel parameterization / Free node parameterization
- Shape derivatives and shape gradients
- Incorporation of adaptation by dual weighted residuals (DWR)
- Calculation of Pareto-fronts by "equality-constraint-based scans"

Ingredients

for Efficient Optimization and Control in Aerodynamics

- Adjoint-based sensitivity evaluation (discrete, continuous, hybrid)
- Checkpointing for unsteady adjoint computation
- Non-loosely coupled (adjoint) PDEs for MDO
- One-shot methods (also called All-at-once, SAND, ...)
- Preconditioning of design equation
- Gradient smoothing
- Multilevel parameterization / Free node parameterization
- Shape derivatives and shape gradients
- Incorporation of adaptation by dual weighted residuals (DWR)
- Calculation of Pareto-fronts by "equality-constraint-based scans"

Munich, March 28-29, 2012 FlowHead 2012 Nico Gauger

. . .

Optimal Active Flow Control - Motivation WIVERSITY

- Aerodynamic behaviour often influenced by separation
 - wings
 - vehicles
- Active flow control is promising concept to manipulate separated flow
 - often realised by blowing and / or suction
- How to choose effective excitation parameters?
 - often determined by open-loop in expensive experiments / numerical simulations

Optimal Active Flow Control - Motivation WIVERSITY

- Aerodynamic behaviour often influenced by separation
 - wings
 - vehicles
- Active flow control is promising concept to manipulate separated flow
 - often realised by blowing and / or suction
- How to choose effective excitation parameters?
 - often determined by open-loop in expensive experiments / numerical simulations

⇒ Gradient based optimal control methods much more efficient!

Adjoints - Motivation

Adjoints - Motivation

Optimal control problem

 $\min J(\phi, w) \quad s.t. \quad R(\phi, w) = 0$

Finite differences are inexact and too expensive to calculate

Gradients calculated by adjoints are accurate

Numerical effort for gradient computation by adjoints is independent from the number of design / control variables

⇒ Use of adjoints!

Munic Finite differences

Continuous adjoint

Discrete adjoint

Different Adjoint Approaches

Continuous Adjoint

- optimize then discretize
- hand coded adjoint solvers
- time consuming in implementation
- efficient in run and memory

Discrete Adjoint / Algorithmic Differentiation (AD)

- discretize then optimize
- hand coding of adjoint solvers or ...
- ... more or less automated generation
- memory effort increases (way out e.g. check-pointing)
- Hybrid Adjoint
 - merge "continuous and discrete" routines
 - optimize differentiated code

Discrete Adjoint Method

- First discretise then optimise
 - First discretise the primal system
 - Then obtain the adjoint system based on the discretised primal equations
- Possibility proposed here: Automatic or Algorithmic Differentiation (AD)
- Basic principle
 - Computer code is concatenation of basic operations (+,-,*,etc.)
 - Apply differentiation rules to this concatenation by using chain rule

Governing Equations

The incompressible RANS equations are given as

$$\begin{aligned} \frac{\partial \left(\rho \overline{u}_{i}\right)}{\partial x_{i}} &= 0\\ \frac{\partial \left(\rho \overline{u}_{i}\right)}{\partial t} &+ \frac{\partial}{\partial x_{i}} \left(\rho \overline{u}_{i} \overline{u}_{j} + \rho \overline{u'_{i} u'_{j}}\right) = -\frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial \overline{\tau}_{ij}}{\partial x_{i}} \end{aligned}$$

The Reynolds stresses are modeled by the eddy viscosity model

$$-\rho \overline{u_i' u_j'} = \mu_t \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) - \frac{2}{3} \rho \delta_{ij} k \text{ and } \mu_t = 0.31 \rho k / \max(0.31\omega; \Omega F2)$$

Two equation SST k-ω turbulence model

$$\frac{\partial(\rho k)}{\partial t} + \frac{\partial(\rho k \overline{u}_{i})}{\partial x_{i}} = \overline{\tau}_{ij} \frac{\partial \overline{u}_{j}}{\partial x_{i}} - \beta * \rho \omega k + \frac{\partial}{\partial x_{i}} \left(\left(\mu + \sigma_{k} \mu_{t}\right) \frac{\partial k}{\partial x_{i}} \right) \right)$$

$$\frac{\partial(\rho \omega)}{\partial t} + \frac{\partial(\rho \omega \overline{u}_{i})}{\partial x_{i}} = \frac{\gamma}{\upsilon_{t}} \overline{\tau}_{ij} \frac{\partial \overline{u}_{j}}{\partial x_{i}} - \beta \rho \omega^{2} + \frac{\partial}{\partial x_{i}} \left(\left(\mu + \sigma_{\omega} \mu_{t}\right) \frac{\partial \omega}{\partial x_{i}} \right) + 2\left(1 - F_{1}\right) \rho \sigma_{w2} \frac{1}{\omega} \frac{\partial k}{\partial x_{i}} \frac{\partial \omega}{\partial x_{i}}$$

Governing Equations

Test Case and Approaches

- Drag minimisation of a rotating cylinder
- Control variable: Rotational speed
- RANS flow solver: ELAN (TU Berlin)
 - Block-structured, FVM, incompressible, SIMPL
 - Fully implicit, MPI based parallelisation
 - Turbulence model : SST k-ω
 - Coded in Fortran
- AD tool for adjoint : TAPENADE (INRIA Sophia Antipolis)
- Reverse Accumulation for SIMPL loops [Christianson]
- Checkpointing by REVOLVE [Griewank, Walther]
 - Usable for Fortran and C

Test Case and Approaches

- Drag minimisation of a rotating cylinder
- Control variable: Rotational speed
- RANS flow solver: ELAN (TU Berlin)
 - Block-structured, FVM, incompressible, SIMP
 - Fully implicit, MPI based parallelisation
 - Turbulence model : SST k-ω
 - Coded in Fortran
- AD tool for adjoint : TAPENADE (INRIA Sophia Antipolis)
- Reverse Accumulation for SIMPL loops [Christianson]
- Checkpointing by REVOLVE [Griewank, Walther]
 - Usable for Fortran and C

- Pre-study: Continuous vs Discrete adjoints
- Steady turbulent flow with Re = 5000

Discrete adjoints : Grid independent, more accurate and consistent [Carnarius, Thiele, Özkaya, Gauger, AIAA-2010-5088-435, 2010]

Validation of the discrete adjoint solver

- Pre-study: Continuous vs Discrete adjoints
- Steady laminar flow with Re = 100

Discrete adjoints : Grid independent, more accurate and consistent [Carnarius, Thiele, Özkaya, Gauger, AIAA-2010-5088-435, 2010]

Development of discrete adjoint methods for unsteady optimal flow control

- Unsteady adjoint-based optimal flow control is very challenging
- Up to now not used for complex practical aerodynamic applications
- One of the main reasons is the prohibitive storage requirement as one has to store the entire flow history
- For example, the storage cost of the primal solution for a 2D URANS incompressible solver with 10⁵ grid points and 1000 unsteady time iterations is O(10) Gb
- Obviously, for practical complex configurations in 3D with more number of grid points and time iterations, the storage requirements may become prohibitively large

Exact and approximate approaches

Several strategies have been proposed to circumvent the memory requirements

Exact methods

- Store all in hard disk approach
- Use of checkpoints
- ...

Approximate methods

- Reduced order methods (e.g. POD models)
- Non-linear frequency domain methods
- ...

Checkpointing

Variation of run time ratio with checkpoints

Comments on checkpointing approach :

- Significantly reduces the memory
- Increases the run time due to extra flow calculations
- Binomial checkpointing ensures optimal extra flow computations

Validation of the discrete adjoint solver

The run time cost for recomputations is a factor of 1.8987 Sensitivity gradients:

2 nd order FDM : $\Delta \omega = 10^{-4}$		Adjoint mo	de AD code	Forward mode A	AD code
-0.430024408		-0.429528263715753		-0.429528222994623	
Difference:	<i>O</i> (10	0 ⁻⁴)	<i>O</i> (1	0^{-8})	
Munich, March 28-29, 2012 FlowHead 2012 Nico Gauger			[N	emili, Özkaya, Gau	ger, 2010

Validation of the discrete adjoint solver

Turbulent flow, *Re* = 5000

Cost function

N = 2000, N' = 1000 $\Delta t = 0.1, \omega = 0.1$

Number of Checkpoints = 150

The run time cost for recomputations is a factor of 1.9240

Sensitivity gradients:

Nico Gauger

FlowHead 2012

2	nd order FDM : Δa	$p = 10^{-4}$	Adjoint	mode AD	o code	Forward	l mode A	D code
-0.56466950		-0.564139519316557		-0.564124863073591				
Di	fference:	<i>O</i> (10)^4)		<i>O</i> (1	$0^{-5})$		
Munich,	March 28-29, 2012				[N	emili, Özk	aya, Gau	ger, 2010]

Turbulent flow, Re=10⁶, α =20^o

Primal flow solutions:

Contours of velocity magnitude

Turbulent flow, $Re=10^6$, $\alpha=20^\circ$

- Lift Maximisation using active flow control:
 - A cascade of 4 actuation slots is installed on the suction side
 - Sinusoidal blowing and suction with zero net mass flux is applied at each slot using

$$\begin{pmatrix} u^k \\ v^k \end{pmatrix} = A^k \begin{pmatrix} \cos \beta^k \\ \sin \beta^k \end{pmatrix} \sin \left[2\pi f \left(t - t_0^k \right) \right], \quad k = 1, \dots, 4.$$

Turbulent flow, Re=10⁶, α =20^o

Lift Maximisation using active flow control:

- A cascade of 4 actuation slots is installed on the suction side
- Sinusoidal blowing and suction with zero net mass flux is applied at each slot using

$$\binom{u^k}{v^k} = A^k \binom{\cos \beta^k}{\sin \beta^k} \sin \left[2\pi f \left(t - t_0^k \right) \right], \quad k = 1, \dots, 4.$$

• Actuated flow from preliminary simulations

Turbulent flow, $Re=10^6$, $\alpha=20^\circ$

Optimal active flow control:

Cost function: Mean lift coefficient

$$J = \overline{C}_{l} = \frac{1}{N} \sum_{n=1}^{N} C_{l}^{n} \qquad N = 100, \ \Delta t = 0.005$$

Control variables: A^k – Amplitude, t_0^k – Phase shift, β^k – Angle (k = 1 to 4)

Turbulence model: Wilcox k- ω

Turbulent flow, Re=10⁶, α =20^o

Optimal active flow control:

Control Parameter	Adjoint mode AD code	Forward mode AD code
Amplitude - 01	0.132869414677547	0.132843488475446
Amplitude - 02	0.167070460770784	0.167065662623720
Amplitude - 03	0.181247271988999	0.181252126166289
Amplitude - 04	0.155844489164031	0.155843813170431

Comparison of the sensitivity gradients with respect to Amplitude at 1st, 2nd, 3rd and 4th actuation slots

Munich, March 28-29, 2012 FlowHead 2012 Nico Gauger [Nemili, Özkaya, Gauger, 2011]

Turbulent flow, Re=10⁶, α =20^o

Optimal active flow control:

Control Parameter	Adjoint mode AD code	Forward mode AD code
Phase shift - 01	0.204246051913213	0.204178681978258
Phase shift - 02	0.244791572866917	0.244693324906123
Phase shift - 03	0.244817849004966	0.244819168327026
Phase shift - 04	0.125957535080716	0.125955476539906

Comparison of the sensitivity gradients with respect to Phase shift at 1st, 2nd, 3rd and 4th actuation slots

Munich, March 28-29, 2012 FlowHead 2012 Nico Gauger [Nemili, Özkaya, Gauger, 2011]

Turbulent flow, Re=10⁶, α =20^o

Optimal active flow control:

Control Parameter	Adjoint mode AD code	Forward mode AD code
Angle - 01	-0.005212791392634	-0.005209720130677
Angle - 02	-0.006697219503597	-0.006705398122871
Angle - 03	-0.006841492789784	-0.006841527973356
Angle - 04	-0.007246751418587	-0.007246750396135

Comparison of the sensitivity gradients with respect to Angle at 1st, 2nd, 3rd and 4th actuation slots

Munich, March 28-29, 2012 FlowHead 2012 Nico Gauger [Nemili, Özkaya, Gauger, 2011]

Optimal Control of Cylinder Flow

- \neg Flow around cylinder at Re=100
 - 7 15 actuation slots for pulsed blowing/suction
 - → Actuation parameters: Amplitude at each slot
 - → Goal: Minimize drag

Munich, March 28-29, 2012 FlowHead 2012 Nico Gauger [Carnarius, Nemili, Özkaya, Gauger, Thiele, 2012]

Optimal Control of Cylinder Flow

- → Optimal distribution of amplitudes
 - → Blowing/suction on upper/lower side generates strong vortices (slit 1-4)
 - \neg Blowing at rear pushes vortices away, increasing base pressure (slit 5-8)
 - \rightarrow Drag is reduced from 1.34 to 0.90

Munich, March 28-29, 2012 FlowHead 2012 Nico Gauger [Carnarius, Nemili, Özkaya, Gauger, Thiele, 2012]

Optimal Control of Cylinder Flow

Munich,

One-Shot approach

Problem Statement

Goal:
$$\min_{u} f(y,u)$$
 s.t. $c(y,u) = 0$,
where y and u are the state and design variables.
Given fixed point iteration $y_{k+1} = G(y_k, u)$ (e.g. pseudo-time
stepping) to solve PDE $c(y, u) = 0$.

Assumptions:

always invertible. IFT ⇒ given u, ∃! y s.t. c(y,u) = 0.
G, f ∈ C^{2,1}.
G contractive: ||G_y(y,u)|| = ||G_y^T(y,u)|| ≤ ρ < 1

One-Shot approach

$$L(y, \overline{y}, u) = f(y, u) + (G(y, u) - y)^T \overline{y}$$

$$= \underbrace{N(y, \overline{y}, u) - y^T \overline{y}}$$

shifted Lagragian
Stationary point:

$$\begin{cases}
L_{\overline{y}} = G(y, u) - y = 0 \\
L_{y} = N_{y}(y, \overline{y}, u)^T - \overline{y} = 0 \\
L_{u} = N_{u}(y, \overline{y}, u)^T = 0
\end{cases}$$

One-step one-shot (step k+1):

$$\begin{cases}
y_{k+1} = G(y_k, u_k) & \text{primal update} \\
\overline{y}_{k+1} = N_{y}(y_k, \overline{y}_k, u_k)^T & \text{dual update} \\
u_{k+1} = u_k - B_k^{-1} N_u(y_k, \overline{y}_k, u_k)^T & \text{design update} \end{cases}$$

- **Aims:** Choose *B* such that: Convergence of (*OS*).
 - Bounded retardation.

Bounded retardation

Jacobian of the extended iteration:

$$J_{*} = \frac{\partial(y_{k+1}, \bar{y}_{k+1}, u_{k+1})}{\partial(y_{k}, \bar{y}_{k}, u_{k})} \Big|_{(y^{*}, \bar{y}^{*}, u^{*})} = \begin{pmatrix} G_{y} & 0 & G_{u} \\ N_{yy} & G_{y}^{T} & N_{yu} \\ -B^{-1}N_{uy} & -B^{-1}G_{u}^{T} & I - B^{-1}N_{uu} \end{pmatrix}$$

Whenever we can define B such that

$$\frac{1-\rho(G_y)}{1-\hat{\rho}(J_*)} < const, \quad i.e. \quad O(opt) \, / \, O(sim) < const$$

we have bounded retardation.

Remark:

Deriving (sufficient) conditions on *B* for J_* to have a spectral radius smaller than 1 has proven difficult.

Instead, we look for descent on the augmented Lagrangian

$$L^{a}(y,\bar{y},u) := \frac{\alpha}{2} \left\| \underbrace{G(y,u) - y} \right\|^{2} + \frac{\beta}{2} \left\| \underbrace{N_{y}(y,\bar{y},u)^{T} - \bar{y}} \right\|^{2} + \underbrace{N - \bar{y}^{T} y}_{P},$$

primal residual

dual residual

Lagrangian

where $\alpha > 0$ and $\beta > 0$.

Theorem (Descent condition):

$$s(y, \overline{y}, u) = \begin{bmatrix} G(y, u) - y \\ N_y(y, \overline{y}, u)^T - \overline{y} \\ -B^{-1}N_u(y, \overline{y}, u)^T \end{bmatrix}$$
 is a descent direction for

all large positive *B* if and only if

$$\alpha\beta(I - \frac{1}{2}(G_{y} + G_{y}^{T})) > (I + \frac{\beta}{2}N_{yy})(I - \frac{1}{2}(G_{y} + G_{y}^{T}))^{-1}(I + \frac{\beta}{2}N_{yy}),$$

which is implied by $\sqrt{\alpha\beta}(1 - \rho) > 1 + \frac{\beta}{2} \|N_{yy}\|.$
> Satisfied for $\beta = \frac{2}{c}, \ \alpha = \frac{2c}{(1 - \rho)^{2}}$ with $c = \|N_{yy}\|.$

Theorem:

A suitable *B* is given by:

$$B = \alpha G_u^T G_u + \beta N_{yu}^T N_{yu} + N_{uu}.$$

[Hamdi, Griewank, 2008]

One-step one-shot

Aerodynamic shape design

Descent for
$$\beta = \frac{2}{c}$$
, $\alpha = \frac{2c}{(1-\rho)^2}$ with $c = \left\| N_{yy} \right\|$.

(In practice choose c = 1, $\Rightarrow \beta = 2$, $\alpha >> 1$.)

A suitable *B* is given by $B = \alpha G_u^T G_u + \beta N_{yu}^T N_{yu} + N_{uu}$.

Instead BFGS updates for the Hessian

$$\nabla_{u}^{2}L^{a} = \underbrace{\alpha G_{u}^{T}G_{u} + \beta N_{yu}^{T}N_{yu} + N_{uu}}_{B} + \alpha \underbrace{(G-y)}_{\rightarrow_{*}0}^{T}G_{uu} + \beta \underbrace{(N_{y}^{T}-\bar{y})}_{\rightarrow_{*}0}^{T}N_{yuu}.$$
The gradient $\nabla_{u}L^{a} = \alpha (G-y)^{T}G_{u} + \beta (N_{y}-\bar{y})^{T}N_{yu} + N_{u}$
is evaluated by Algorithmic Differentiation (AD).

[Özkaya, Gauger, 2008]

Flow Solver: ELAN (TU Berlin)

- 3D Navier-Stokes (RANS)
- incompressible with pressure correction
- multiblock
- k-ω (Wilcox) turbulence model (and others)
- Fortran (20.000 lines)

AD Tool: TAPENADE (INRIA)

- source to source
- reverse for first derivatives
- tangent on reverse for second derivatives

Drag reduction with lift constraint

- NACA 4412
- Re = 1.000.000, α=5.1°
- RANS
- k-ω (Wilcox) turbulence model
- 300 surface mesh points

Approaches for Optimization

- one-shot method
- entire design chain differentiated
- gradient smoothing
- penalty multiplier method

Drag reduction with lift constraint

- NACA 4412
- Re = 1.000.000, α=5.1°
- RANS
- k-ω (Wilcox) turbulence model
- 300 surface mesh points

Approaches for Optimization

- one-shot method
- entire design chain differentiated
- gradient smoothing
- penalty multiplier method

Drag reduction with lift constraint

- NACA 4412
- Re = 1.000.000, α=5.1°
- RANS
- k-ω (Wilcox) turbulence model
- 300 surface mesh points

Approaches for Optimization

- · one-shot method
- entire design chain differentiated
- gradient smoothing
- penalty multiplier method

airfoil

Ingredients

for Efficient Optimization and Control in Aerodynamics

- Adjoint-based sensitivity evaluation (discrete, continuous, hybrid)
- Checkpointing for unsteady adjoint computation
- Non-loosely coupled (adjoint) PDEs for MDO
- One-shot methods (also called All-at-once, SAND, ...)
- Preconditioning of design equation
- Gradient smoothing
- Multilevel parameterization / Free node parameterization
- Shape derivatives and shape gradients
- Incorporation of adaptation by dual weighted residuals (DWR)
- Calculation of Pareto-fronts by "equality-constraint-based scans"

