Fluid Optimization Workflows for Highly Effective Automotive Development Processes (FLOWHEAD)

WORKFLOW EXAMPLE FOR NON-PARAMETRIC SENSITIVITY BASED ITERATIVE TOPO AND SHAPE OPTIMIZATION LOOPS

Thomas Schützle, Michael Böhm, Jürgen Sauter FE-DESIGN GmbH, Munich, March 26th, 2012

Overview

- Introduction / Review
- WP2 / Demonstrator Framework
- Topological optimization loop
- Shape optimization loop
- Summary and Future developments

FE-DESIGN *the optimization company*

FE-DESIGN – the optimization company

FE-DESIGN: Locations and Partners

the optimization company

FE-DESIGN Your Partner for Optimization

FE-DESIGN – the optimization company

Parameterization technologies for geometry – CFD Examples

FE-DESIGN – the optimization company FE

Retrospect - What will be the result of FlowHead ?

- Sensitivity based design optimization
- Multi criteria optimization
- Optimization with respect to manufacturing constraints

Challenges to get optimization "used" in the industrial development process

- Optimization processes have to fit into the PDP
- The designer / engineer has to be guided through the optimization
- The approach should be easy to use and stable

FE-DESIGN – the optimization company

Retrospect – "Software view"

Even more challenges and things to think of ...

- Sensitivity filtering
 - Different algorithms for shape and topology optimization
- Optimization algorithm
 - In FLOWHEAD we use MMA but an interface to integrate other algorithms should be present
- Result extraction and smoothing
 - Creating closed surfaces from topological optimization results
- Mesh treatment during shape optimization

FE-DESIGN – the optimization company

. . .

Retrospect – "The users view"

- An optimization tool has to be user-friendly
- An application in a large production cluster environment has to be stable especially regarding clean up
- Real problems are in general very big and we need parallel applications to deal with them
- There are different optimization methods and we do not want to use a specialized tool for each of them
- There are a several software products in the PDP and we need to think about interfaces and easy ways for data transfer

Demonstrator Framework - Advantages

Optimized Model / Surface

- Adaptable optimization
- Workflow Simplifies testing and validation
- Modules can be developed separately
- Partners can develop modules for the framework
- Defined interfaces
- Sustainable architecture

FE-DESIGN – the optimization company

Demonstrator Framework - User friendliness

- User wants to specify CFD problem and the optimization task
- Optimization system has to create necessary adjoint problem(s)

Demonstrator Framework – Possible Optimization Loop

Demonstrator Framework – Capabilities

- Different optimization algorithms
 - Steepest descent (unconstraint)
 - MMA Method of moving asymptotes (constraint + unconstraint)
- Different filter and regularization methods available
 - In-plane regularization (TU München)
 - Out-of-plane filtering (TU München)
 - Laplace regularization
 - Sigmund filter (for surfaces and volumes)
 - Design Nondesign transition filter

In-plane regularization

UNIVERSITÄT

Demonstrator Framework – Objective function and constraints

Cost functions can be used as objective function •

 $\min(f(x))$

Cost functions can be used as constraints

 $g(x) \leq g^*$

Cost functions can be combined

 $f(x) = a * f_1(x) + b * f_2(x)$

FE-DESIGN the optimization company 1.00E+000

Demonstrator Framework – Topology optimization

Corporate proprietary, Approval for distributing and copying required

Topology optimization - VW Topo Example

Demonstrator Framework – Result extraction

Topology optimization - VW Topo Example

Demonstrator Framework – Manufacturing Constraints for Topological Optimization

the optimization company

Demonstrator Framework – Shape optimization

Shape Optimization – VW Example

After topological optimization

• The extracted STL surface can be used for further shape optimization processes

Optimization of existing products

• Existing models can start the optimization loop within this state

FE-DESIGN – the optimization company

External Shape Optimization – SAE Body Example

the optimization company

Demonstrator Framework – Post-processing

CAD re-construction

Re-construct based on IGES cuts

A very important step is how to get the optimized geometry back into a CAD system

IGES re-construct

- The advantage of IGES cuts are big and simple shapes
- Depending on the number of cuts a de-featuring is possible

Re-construct based on STL data

STL re-construct

- The shape size depends on the local surface angle and
- All features are kept

FE-DESIGN – the optimization company

Summary

• A Demonstrator Framework has been developed that :

- Can be used to easily set up an optimization tasks
- Controls topo and shape optimization processes
- Takes care about data handling
- Is open for parallel optimization
- Supports constraints and manufacturing constraints
- Provides multiple objective functions
- Uses Regularization (TUM) and filtering methods
- Includes different optimization algorithms MMA and Steepest Descent
- Provides an OpenFOAM interfaceIs
- Is modular and open for further developments

Outlook

- Further development of adjoints
- Improvement of optimization algorithms and stability
- Advanced mesh regularization for internal mesh
- Improvement of sedimentation algorithms
- Adding manufacturing constraints also for shape
- Improving CAD back transfer
- Adding additional solver interfaces
 - Sustainable architecture

Thank you for your attention

