
Toward a Discrete Adjoint Model for OpenFOAM

Markus Towara, Uwe Naumann
{towara,naumann}@stce.rwth-aachen.de

LuFG Informatik 12: Software and Tools for Computational Engineering

March 28, 2012

Vita

2006 - 2011 Computational Engineering Science @ RWTH-Aachen

2010 - 2011 Internship / Diploma thesis @ Volkswagen AG - Kassel

2012 PhD Student @ STCE, RWTH-Aachen

2 / 23

Acknowledgment

I Niloofar Sarafin for adding dco support to OpenFOAM

I Carsten Othmer for the introduction to adjointSimpleFoam

3 / 23

Topics

Motivation for AD in Context of Shape Optimization

black-box AD / white-box AD

application to simpleFoam

treatment of linear solver

4 / 23

Motivation for AD
in Context of Shape Optimization

I AD promises:
I greater flexibility w.r.t new objectives
I easy adaption to new solver types / generations
I calculated derivatives are exact w.r.t the used discretization
I higher order derivatives available

I Problems:
I memory requirements
I how to retain parallelism?

5 / 23

Black-box AD

p
0

U
0

α
0

p

U

sensitivities

I black-box approach can deliver sensitivities without looking at the
inside of the code

I pro: very versatile and fast turnaround time

I contra: for iterative solvers: huge memory requirements

I take a closer look at the code to identify potential simplifications

6 / 23

Reminder Topology Optimization

no optimization added ”material” reconstructed geometry

Added penalty term1 α :

(v · ∇) v = ν∇2v−∇p − αv

1C. Othmer: A continuous adjoint formulation for the computation of
topological and surface sensitivities of ducted flows. Intern. J. f. Num. Meth.
in Fluids. p. 861–877, 2008.

7 / 23

Discrete OpenFOAM

I put dco into src/OpenFOAM

I include dco.hpp

I replace doubles with active datatype from dco

I OpenFOAM has own typedef for scalar floating point values
→ just one substitution

I in theory we now just need to recompile OpenFOAM and are ready
to go

8 / 23

OpenFOAM a1s mode

in src/OpenFOAM/primitives/Scalar/doubleScalar/doubleScalar.h: replace:

namespace Foam
{

t y p ed e f doub l e d oub l e S c a l a r ;
. . .

}

with:

#i n c l u d e ”dco . hpp”
namespace Foam
{

t y p ed e f dco : : a1s : : t ype d oub l e S c a l a r ;
. . .

}

9 / 23

OpenFOAM t1s mode

in src/OpenFOAM/primitives/Scalar/doubleScalar/doubleScalar.h: replace:

namespace Foam
{

t y p ed e f doub l e d oub l e S c a l a r ;
. . .

}

with:

#i n c l u d e ”dco . hpp”
namespace Foam
{

t y p ed e f dco : : t 1 s : : t ype d oub l e S c a l a r ;
. . .

}

10 / 23

in Reality

I some minor changes have to be made in the OpenFOAM code:
I unions don’t support active datatypes
I no cast from dco::type to int available, use value v(d) instead
I some functions (pow,max,min) don’t use the doubleScalar typedef

and need to be adjusted

11 / 23

usage of discrete OpenFOAM - t1s

Black-Box tangent-linear Version of simpleFoam, calculates ∂J
∂αi

:

doub l e s en s = 0 ;
dco : : t 1 s : : s e t (a lpha [i] , 1 , 1) ;

f o r (runTime++; ! runTime . end () ; runTime++)
{

. . . // s o l v e f o r U, p
}
// Sum p r e s s u r e ove r i n l e t f a c e s s c a l e d wi th f a c e a r ea
d oub l e S c a l a r J = gSum(p . bounda r yF i e l d ()∗ patch . magSf ()) ;

dco : : t 1 s : : ge t (J , sens , 1) ;

Need to do this N-times to get full sensitivity field!

12 / 23

usage of discrete OpenFOAM - a1s

Black-Box adjoint Version of simpleFoam, calculates gradient of J:

dco : : a1s : : s t a t i c t a p e tape (t a p eS i z e) ;
doub l e ∗ s en s = new doub l e [a l pha . s i z e ()] ;

f o r (i n t i =0; i<a lpha . s i z e () ; i++)
tape . r e g i s t e r v a r i a b l e (a l pha [i]) ;

f o r (runTime++; ! runTime . end () ; runTime++)
{

. . . // s o l v e f o r U, p
}
// Sum p r e s s u r e ove r i n l e t f a c e s s c a l e d wi th f a c e a r ea
d oub l e S c a l a r J = gSum(p . bounda r yF i e l d ()∗ patch . magSf ()) ;
dco : : a1s : : s e t (J ,1 , −1) ;
tape . i n t e r p r e t r e v e r s e () ;

f o r (i n t i = 0 ; i<a lpha . s i z e () ; i++)
dco : : a1s : : ge t (a l pha [i] , s en s [i] , −1) ;

13 / 23

Test-Case Geometry

I laminar flow with Re = 100

I vortex areas in the corners

I J =
∫

Γ p dΓ

I calculate sensitivity ∂J
∂α

I black-box approach is used

Re = 100

14 / 23

Results

I 1300 cubic cells

I differentiate over all (pseudo)-timesteps

I plotted: sensitivity with respect to flow resistance α

adjointSimpleFoam2 simpleFoam t1s simpleFoam a1s

2adjointShapeOptimizationFoam in OpenFOAM 2.1.0
15 / 23

Results

I plotted: sensitivity w.r.t. flow resistance α, capped above zero

I finite-difference version available, but finding right ∆α is not trivial

adjointSimpleFoam simpleFoam t1s simpleFoam a1s

16 / 23

Strategies to Reduce Memory Usage

gray-box: use strategies like checkpointing to store only parts of the
program run

white-box: exploit the structure of the program

17 / 23

Checkpointing

Program execution

C

C

C

Tape

I save states of the forward run to reexecute the program from there
to generate a new chunk of tape

I for efficient placement of the checkpoints see3

3A. Griewank, A. Walther: Revolve: An Implementation of Checkpointing
for the Reverse or Adjoint Mode of Computational Differentiation.Transactions
on Mathematical Software Vol. 26.1, 2000.

18 / 23

White-box AD

Ax = b
→ iterative solver

p
0

U
0

α
0

p

U

sensitivities

I most of the time is spent inside the solver loop

I this leads to the memory requirements

I if A is linear we can stop taping inside the loop → semi-discrete

I but further iteration is needed in the backward run

19 / 23

Semi-Discrete Mode

A=...
x=...
b=...setup

evaluation

solving

while(){

 ...

}

J=J(x)
J = 1
interpret_tape()

A=...
x=...
b=...setup

evaluation

solving

while(){

 ...

}

J=J(x)
J = 1
interpret_tape()

J J

???

20 / 23

Semi-Discrete Mode

Tape On:

Data is stored in forward run
and interpreted in backward
run

Tape Off:

No data is stored in forward
run, another equation system
needs to be solved in
backward run

21 / 23

Conclusion

I black-box approach works but is limited to small problems

I checkpointing schemes can help to tackle bigger problem sizes, but
at the expense of computing time

I white-box ad approach has the potential to enable much bigger
problem sizes

22 / 23

Thank you for your attention!

23 / 23

	Motivation for AD in Context of Shape Optimization
	black-box AD / white-box AD
	application to simpleFoam
	treatment of linear solver

