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Development of Adjoint Methods in PCOpt/NTUA

Development of both continuous & discrete adjoint variants.

For shape, flow-control, robust-design and topology optimization problems

Calculation of up to 3rd-order sensitivities.Calculation of up to 3rd order sensitivities.

Development of continuous adjoint methods to widely-used turbulence models.

Development on the in-house PUMA codes, OpenFOAM and FINEOpen.

Th i h dj i d ll GPU bl d (CUDA)The in-house adjoint codes are all GPU-enabled (CUDA)

Why Continuous Adjoint?Why Continuous Adjoint?

Continuous adjoint is neither better nor worse than discrete adjoint.

Both have advantages & (manageable) disadvantages.

An interesting feature of continuous adjoint is that the programmer “sees” the adjoint
PDEs and their boundary conditions (in closed form relations). If you have decided to
work with discrete adjoint, it is recommended to start with continuous adjoint!

Possibility of performing well-justified simplifications, if necessary.

Any problem that can be solved with discrete, it can also be solved with continuous
adjoint and vice-versa. In some cases, it is easier to initially work out your idea with
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discrete adjoint, before switching to continuous adjoint.



Getting Started: Objective Functions
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• Inverse design.
• Functional and design variables correspond to the same boundary !!!
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• Losses Minimization.
• Functional and design variables correspond to different boundaries !!!
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• Losses Minimization.
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•Transformation of  the inlet/outlet integral to a field integral !!!



Development of the Continuous Adjoint Method

• State Equations
(plus the turbulence model eq.)
The turbulence model eq will not be differentiated (“frozen turbulence assumption”)The turbulence model eq. will not be differentiated (“frozen turbulence assumption”)

• Development of  the Adjoint Equations & Boundary Conditions
b fFor any objective function F:

where bm are the design variables.
Next step: Make it independent of the variations in the state variables.
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Next step:  Make it independent of  the variations in the state variables.



Development of the Continuous Adjoint Method

• Adjoint Equations

• Adjoint Boundary Conditions

&Inlet:

Outlet:

llWalls: &
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Development of the Continuous Adjoint Method

•Sensitivity Derivatives

An appropriate mathematical formulation, based on the application of the Green-Gauss 
divergence theorem may lead to sensitivity derivatives exclusively in terms of boundary 
integrals (even if the objective function was a field integral !!!). Advantages!g ( g ) g

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘A Continuous Adjoint Method with Objective Function . . OU, .C. G NN OG OU: Co uous djo e od w Objec ve u c o
Derivatives Based on Boundary Integrals for Inviscid and Viscous Flows’, Computers & Fluids, Vol. 36, 
pp. 325-341, 2007.

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Total Pressure Losses Minimization in Turbomachinery
Cascades, Using a New Continuous Adjoint Formulation’, Proc. IMechE, Part A: Journal of  Power and 
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, g j , , J
Energy (Special Issue on Turbomachinery), Vol. 221, pp. 865-872, 2007.



Direct Differentiation (DD) Approach

If  bi denotes the N design variables and Φ any flow quantity:

Total Partial Variation

… plus the same for the state boundary conditions (Continuous DD)

“E i l t” t th Di t DD“Equivalent” to the Discrete DD:

►The DD method is an easily programmable (expensive, though) tool to compare the 
gradient computed by the Adjoint Method. 
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►Also, DD is an indispensable component of  methods computing higher-order 
sensitivity derivatives. 



Inverse Design of a 2D Compressor Cascade

►Comparison of  the gradient(F) 
computed by the adjoint method (AV) with 
finite-differences (FD) and direct-
differentiation (DD).
►Comparison of  more than one descent 
methods.
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Adjoint to the Spalart-Allmaras (SA) Turbulence Model

State Equations : (Turbulent Flows of  an Incompressible Fluid)

The idea is to avoid making the usual assumption that “shape variations do not affect
turbulence” ( ). To do so, we introduce the adjoint turbulent viscosity into Faug,

p pressure q Adjoint pressure

vi velocities ui Adjoint velocities

turbulence variable Adjoint turbulence
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turbulence variable Adjoint turbulence 
variable



Adjoint to the Spalart-Allmaras (SA) Turbulence Model

•An additional adjoint PDE (the adjoint to the S-A model eq.)

•What is new:

(…plus boundary conditions)

N t i th dj i t t (b f th t i t t!)•New terms in the adjoint momentum eqs. (by far the most important!)

•New terms in their boundary conditions

A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER: ‘ Continuous Adjoint

•New terms in the sensitivity derivative expressions
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A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER:  Continuous Adjoint 
Approach to the Spalart-Allmaras Turbulence Model for Incompressible Flows’, Computers & Fluids, 
38, pp. 1528-1538, 2009.



Adjoint to the Spalart-Allmaras (SA) Turbulence Model

Why???

in out

n t n t
S S

F V p dS V p dSρ ρ= −∫ ∫
Re=1×106

Re=3.5×105Re 3.5 10

Re=5×103
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Adjoint Wall Functions (k-ε Model)

Friction velocity :

Δ

Example: Unstructured grids, 
finite-volumes k-ε turbulence

Δ

finite-volumes, k-ε turbulence 
model, with slip velocity at the 
wall
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Adjoint Wall Functions (k-ε Model)

… after satisfying the field adjoint equations and eliminating the field integrals, 

But all non-geometrical quantities along the “wall” depend on the friction velocity        
so all we have to do is to eliminate variations in This can be proved to be, so all we have to do is to eliminate variations in       . This can be proved to be 

equivalent to the definition of  the adjoint friction velocity

or

A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER: ‘Adjoint Wall Functions: 

and introduces what we will refer to as the adjoint law of  the wall.
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j
A New Concept for Use in Aerodynamic Shape Optimization’, Journal of  Computational Physics, Vol. 
229, pp. 5228–5245 , 2010.



Adjoint Wall Functions (k-ε Model) - Application

n t n t
S S

F V p dS V p dSρ ρ= −∫ ∫
in outS S
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Design of  an axial diffuser with minimum total pressure losses (Re=1x106)



Applications of the Adjoint Method in Turbomachinery
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Design-Optimization of  a 3D peripheral compressor rows, for minimal viscous 
losses, with geometrical constraints, using the continuous adjoint method.

Optimal Blade Optimal Blade
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g g j
Turbulence model : Low-Reynolds number Spalart-Allmaras.



Applications of the Adjoint Method in Turbomachinery

pinit

popt

Optimization of a Francis turbine blade, targeting a 1.5m increase in the
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Optimization of  a Francis turbine blade, targeting a 1.5m increase in the 
hydraulic height, subject to a number of  flow constraints, incl. cavitation. 



Hessian Matrix Computation 

Newton Methods :

Hessian Matrix Computation using the DD-DD method:p g

(Think “Discrete” , program Continuous Adjoint)

k=1,…,N design variablesk 1,…,N  design variables
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► The cost for computing the Hessian via the DD-DD approach scales with N2.



Computation of the Hessian Matrix, via DD-AV

System solutions (EFS)y ( )

EFSEFS

The Adjoint equation is the same with that obtained for the Gradient !!!

► The cost per Newton cycle is N+1+1=N+2 EFS! Scales with N, not N2.
► DD-AV is the most efficient approach (among DD-DD, AV-DD, AV-AV)!
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► DD AV is the most efficient approach (among DD DD, AV DD, AV AV)!



Computation of the Hessian Matrix

Using Continuous Adjoint – The DD-AV Scheme:

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Direct, Adjoint and Mixed Approaches for the Computation 

Relevant references, in both continuous and discrete adjoint:

, , j pp p
of  Hessian in Airfoil Design Problems’, Int. Num. Meth. in Fluids, 56, 1929-1943, 2008.

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Computation of  the Hessian Matrix in Aerodynamic Inverse 
Design using Continuous Adjoint Formulations’, Computers & Fluids, 37, 1029-1039, 2008.

K C GIANNAKOGLOU D I PAPADIMITRIOU ‘Adj i M h d f di d H i b dK.C. GIANNAKOGLOU, D.I. PAPADIMITRIOU: ‘Adjoint Methods for gradient- and Hessian-based 
Aerodynamic Shape Optimization’, EUROGEN 2007, Jyvaskyla, Finland, June 11-13, 2007.

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Aerodynamic Shape Optimization using Adjoint and Direct 
Approaches’, Arch. Comp.Meth. Engi.(State of  the Art Reviews), Vol. 15(4), pp. 447-488, 2008 .
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pp p g ( ) ( ) pp
D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘The Continuous Direct-Adjoint Approach for Second Order 

Sensitivities in Viscous Aerodynamic Inverse Design Problems’, Computers & Fluids, 38, 1539-1548, 2009. 



Computation of the Hessian Matrix - Application

Inverse Design of  a Compressor Cascade, Inviscid Flow

vs.

(FD)                                                 (DD-AV)              

Compute the Hessian only once, in the first 
cycle and, then, switch to quasi-Newton 

methods (BFGS, etc)
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One-Shot Variants – Overall CPU time comparison

OSD ► One-Shot Steepest Descent
OQN ► One-Shot Quasi-Newton (BFGS)
OEN ► One-Shot Exact Newton
OEQN ► O Sh E (fi l ) Q i( h ) N

SSD ► Segregated Steepest Descent
SQN ► Segregated Quasi-Newton (BFGS)
SEN ► Segregated Exact Newton
SEQN ► S d E (fi l ) Q i( h ) N OEQN ► One-Shot Exact(first cycle)-Quasi(then) NewtonSEQN ► Segregated Exact(first cycle)-Quasi(then) Newton

Design of  a Compressor Cascade, 6 (Left) & 12 (Right) Design Variables
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D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘One-Shot Shape Optimization Using the Exact 
Hessian’, ECCOMAS CFD 2010, 5th European Conference on CFD, Lisbon, Portugal, June 14-17, 2010.



Truncated Newton Methods

Why?
► Create more efficient Hessian-based optimization schemes.
► Desirable cost per cycle <<N EFS, without damaging accuracy.

Inspired by:
Th C j t G di t (CG) th d f l iThe Conjugate Gradient (CG) method for solving
systems of linear equations

requires only matrix-vector products.
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The AV-DD Truncated Newton Method (with CG)

Total Cost= 2+2MCG << N
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AV-DD Truncated Newton method – Why & How?

Comparison of  
AV-DD Truncated Newton method,
quasi-Newton BFGS &Parametric Study of  the recommended 
(exact) Newton
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D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Aerodynamic design using the truncated Newton 
algorithm and the continuous adjoint approach’, Int. J.for Numerical Methods in Fluids, 2011.



Robust Design

For N design (bi) & M environmental (ci) variables, 
minimize

( Second-Order, Second-Moment, 
SOSM, approach) 

where the estimated mean and the standard 
deviation of  F are given by

► The recommended approach, if  M<<N, DDc-DDc-AVb

K.  GIANNAKOGLOU,    NTUA   25

exists and has been programmed in both discrete and continuous adjoint.



Robust Design

DDc-DDc-AVbThe CPU cost of  the                                      method:

E.M. PAPOUTSIS-KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Robust Design inE.M. PAPOUTSIS KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: Robust Design in 
Aerodynamics using 3rd-Order Sensitivity Analysis based on Discrete Adjoint. Application to Quasi-1D 
Flows’, International Journal for Numerical Methods in Fluids, to appear 2011.

E.M. PAPOUTSIS-KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: Discrete and
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E.M. PAPOUTSIS KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: Discrete and 
Continuous Adjoint Methods in Aerodynamic Robust Design problems, CFD and Optimization 2011, 
ECCOMAS Thematic Conference, Antalya, Turkey, May 23-25, 2011.



Robust Design – A Pseudo 1D Example

Two environmental variables:Two environmental variables:

•Outlet Mach number M2

•Darcy friction loss coefficient λy

E.M. PAPOUTSIS-KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Robust Design in
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E.M. PAPOUTSIS KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: Robust Design in 
Aerodynamics using 3rd-Order Sensitivity Analysis based on Discrete Adjoint. Application to Quasi-1D 
Flows’, International Journal for Numerical Methods in Fluids, to appear 2011



Flow Control Optimization

Flow Control – here, by means of  continuous or pulsating jets – for:

► Assume suction or blowing along the “solid” (perforated?) walls.
► Develop the (continuous) adjoint method using drag or pt-losses as obj. function and 
h l h “ ll” j l i d i i bl ( f )the normal to the “wall” jet velocity as design variables (see references).
► Be careful:                                                            for bi=normal_jet_velocity

► An optimization problem with thousands of  design variables! Adjoint can make it!
► Idea: Compute the sensitivity derivatives by solving the flow & adjoint problem once, 
for normal jet velocity=0; use the so-computed sensitivity maps to optimally locate the
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for  normal_jet_velocity=0; use the so-computed sensitivity maps to optimally locate the 
jets. Stop here or iterate to optimize all jet parameters.



Continuous Adjoint Method for Flow Control Problems 

Objective function :  Pt losses

( )

(b)

(a)

CROSS-CHECK: Jet application at the most promising positions:CROSS-CHECK: Jet application at the most promising positions:

(study (c) is the combination of  (a)&(b) ) 

A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER: ‘Optimal Location of  
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Suction or Blowing Jets Using the Continuous Adjoint Approach’, ECCOMAS CFD 2010, 5th European 
Conference on CFD, Lisbon, Portugal, June 14-17, 2010



Continuous Adjoint Method for Flow Control Problems 

Objective function :  Drag

Velocity

FDrag=0.0222

Adj i V l i

FDrag=0.0095
CROSS-CHECK:

Adjoint Velocity

C ll d C

A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER: ‘Optimal Location of  

Controlled Case
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Suction or Blowing Jets Using the Continuous Adjoint Approach’, ECCOMAS CFD 2010, 5th European 
Conference on CFD, Lisbon, Portugal, June 14-17, 2010



Topology Optimization & Continuous Adjoint Method

Flow Model: 
Incompressible fluid
Turbulent flow
With heat transfer effects
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Topology Optimization & Continuous Adjoint Method

Adjoint Equations: 
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Topology Optimization & Continuous Adjoint Method

f1=0.025, f2=2.48

Outlet 2

Outlet 1

Μin. Δpt

Inlet Outlet 3

f1=0.037, f2=3.00Outlet 4

Constraint: mout 1,2,3,4 = 25% minlet

f1=0.053, f2=3.51

Min. Δpt

Constraint: mout 1,2,3,4 = 25% minlet

pt

Μax. ΔΤ

Constraint: Tout1= Tout2 = Tout3 = Tout4
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f1=0.026, f2=2.83



Topology Optimization & Continuous Adjoint Method

Topology optimization of  a manifold
at laminar flow conditions.

Unconstrained

With constraint on 
the mass flowrate per exit

With constraint on the
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With constraint on the
Flow swirl at the exit



Summary /Conclusions / Acknowledgement

► Working with continuous adjoint is nice because you gain insight into adjoint PDEs
& their BCs or clearly understand/control the assumptions made.

► (Exact) adjoint methods lead to expressions for the objective function gradient which( ) j p j g
comprise only boundary integrals, even if the objective function is a field integral.

► There are good reasons for developing and using the adjoint to the turbulence model
equations. Stop working with the “frozen-turbulence assumption”.q p g p

► The adjoint law of the wall is a useful tool for industrial applications.

► DD and AV can be used to compute the Hessian, allowing the use of exact Newton
methods For high-dimensional problems try the (one-shot) exactly-initialized quasi-methods. For high-dimensional problems, try the (one-shot) exactly-initialized quasi-
Newton algorithm, which outperforms both exact and quasi-Newton methods.

► The Truncated Newton Methods avoids Hessian matrix computations and is faster.

► R b d i h d (SOSM h) b fi f h il bili f ffi i► Robust design methods (SOSM approach) benefit from the availability of efficient
methods to compute high-order derivatives of F.

Parts of this research were funded by:
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